scholarly journals Quantification of southwest China rainfall during the 8.2 ka BP event with response to North Atlantic cooling

2016 ◽  
Author(s):  
Y. Liu ◽  
C. Hu

Abstract. The 8.2 ka BP event could provide important information for predicting abrupt climate change in the future. Although published records show that the East Asian monsoon area responded to the 8.2 ka BP event, there is no high resolution quantitative reconstructed climate record in this area. In this study, a reconstructed 10-yr moving average annual rainfall record in south west China during the 8.2 ka BP event is presented by comparing two high-resolution stalagmite δ18O records from the same moisture transport pathway. Trends between the reconstructed rainfall sequence and stalagmite Mg/Ca record, another proxy of rainfall, are compared. The reconstructed record shows that the mean annual rainfall in southwest China during the central 8.2 ka BP event is less than that of present (1950 ~ 1990) by ~200 mm, and decreased by ~ 350 mm in ~70 years experiencing an extreme drying period lasting ~50 years. Further analysis suggests that the rainfall decrease in southwest China coupled with the Greenland cooling, the correlation between the annual rainfall and the Greenland ice core δ18O, an indicator of temperature, during the 8.2 ka BP event is significantly higher than today, and may provide insights into abrupt climate prediction under warming conditions.

2016 ◽  
Vol 12 (7) ◽  
pp. 1583-1590 ◽  
Author(s):  
Yuhui Liu ◽  
Chaoyong Hu

Abstract. The 8.2 ka BP event could provide important information for predicting abrupt climate change in the future. Although published records show that the East Asian monsoon area responded to the 8.2 ka BP event, there is no high-resolution quantitative reconstructed climate record in this area. In this study, a reconstructed 10-year moving average annual rainfall record in southwest China during the 8.2 ka BP event is presented by comparing two high-resolution stalagmite δ18O records from Dongge cave and Heshang cave. This decade-scale rainfall reconstruction is based on a central-scale model and is confirmed by inter-annual monitoring records, which show a significant positive correlation between the regional mean annual rainfall and the drip water annual average δ18O difference from two caves along the same monsoon moisture transport pathway from May 2011 to April 2014. Similar trends between the reconstructed rainfall and the stalagmite Mg ∕ Ca record, another proxy of rainfall, during the 8.2 ka BP period further increase the confidence of the quantification of the rainfall record. The reconstructed record shows that the mean annual rainfall in southwest China during the central 8.2 ka BP event is less than that of present (1950–1990) by  ∼  200 mm and decreased by  ∼  350 mm in  ∼  70 years experiencing an extreme drying period lasting for  ∼  50 years. Comparison of the reconstructed rainfall record in southwest China with Greenland ice core δ18O and δ15N records suggests that the reduced rainfall in southwest China during the 8.2 ka BP period was coupled with Greenland cooling with a possible response rate of 110 ± 30 mm °C−1.


2017 ◽  
Vol 11 (1) ◽  
pp. 343-362 ◽  
Author(s):  
Sentia Goursaud ◽  
Valérie Masson-Delmotte ◽  
Vincent Favier ◽  
Susanne Preunkert ◽  
Michel Fily ◽  
...  

Abstract. A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on subannual analyses of δ18O and major chemical components was combined with 5 reference years associated with nuclear tests and non-retreat of summer sea ice to build the initial ice-core chronology (1946–2006), stressing uncertain counting for 8 years. We focus here on the resulting δ18O and accumulation records. With an average value of 21.8 ± 6.9 cm w.e. yr−1, local accumulation shows multi-decadal variations peaking in the 1980s, but no long-term trend. Similar results are obtained for δ18O, also characterised by a remarkably low and variable amplitude of the seasonal cycle. The ice-core records are compared with regional records of temperature, stake area accumulation measurements and variations in sea-ice extent, and outputs from two models nudged to ERA (European Reanalysis) atmospheric reanalyses: the high-resolution atmospheric general circulation model (AGCM), including stable water isotopes ECHAM5-wiso (European Centre Hamburg model), and the regional atmospheric model Modèle Atmosphérique Régional (AR). A significant linear correlation is identified between decadal variations in δ18O and regional temperature. No significant relationship appears with regional sea-ice extent. A weak and significant correlation appears with Dumont d'Urville wind speed, increasing after 1979. The model-data comparison highlights the inadequacy of ECHAM5-wiso simulations prior to 1979, possibly due to the lack of data assimilation to constrain atmospheric reanalyses. Systematic biases are identified in the ECHAM5-wiso simulation, such as an overestimation of the mean accumulation rate and its interannual variability, a strong cold bias and an underestimation of the mean δ18O value and its interannual variability. As a result, relationships between simulated δ18O and temperature are weaker than observed. Such systematic precipitation and temperature biases are not displayed by MAR, suggesting that the model resolution plays a key role along the Antarctic ice sheet coastal topography. Interannual variations in ECHAM5-wiso temperature and precipitation accurately capture signals from meteorological data and stake observations and are used to refine the initial ice-core chronology within 2 years. After this adjustment, remarkable positive (negative) δ18O anomalies are identified in the ice-core record and the ECHAM5-wiso simulation in 1986 and 2002 (1998–1999), respectively. Despite uncertainties associated with post-deposition processes and signal-to-noise issues, in one single coastal ice-core record, we conclude that the S1C1 core can correctly capture major annual anomalies in δ18O as well as multi-decadal variations. These findings highlight the importance of improving the network of coastal high-resolution ice-core records, and stress the skills and limitations of atmospheric models for accumulation and δ18O in coastal Antarctic areas. This is particularly important for the overall East Antarctic ice sheet mass balance.


2020 ◽  
Author(s):  
Dr Subhabrata Panda

<p>Long period annual rainfall data series from nine raingauge stations throughout eastern India were analysed. Those data series were for the years 1901 to 1965 for Aijal (Mizoram); 1901 to 1984 for Imphal (Manipur); 1901 to 1986 for Guwahati (Assam), Shillong, Cherrapunji (Meghalaya); 1901 to 1987 for Cuttack (Odisha), Patna (Bihar), Agartala (Tripura), Krishnanagar (West Bengal). Incomplete annual rainfall data were found out by taking average of data of preceding and following years. Each annual rainfall series was divided into modelled period (1901 to 1980 for eight stations except Aijal with 1901 to 1960) and predicted period (data for years left in the series after modelled period for evaluation of the model for prediction of future rainfalls). Each annual rainfall series in the modelled period was first converted into percentage values of the mean annual rainfall and then plotted against year, which showed the oscillations of the historigram about the mean line (Tomlinson, 1987 for New Zealand rainfalls). Such type of characteristic historigrams for all stations showed periodic nature of annual rainfalls throughout eastern India. So, autoregressive integrated moving average (ARIMA) model (Clarke, 1973) was used to evolve a useful model for prediction of future rainfalls. As the ARIMA model was biased for periodicity due to inclusion of both the ‘sin’ and ‘cos’ functions and period length as 12, modelled data series were analysed for polynomial regression. The accepted degrees of polynomials were decided on the basis of analysis of variance (ANOVA). Acceptance of either ARIMA model or polynomial regression was done on the basis of -test. In most of the cases in the observed historigrams the lengths of periods were less than eight years and in some cases those were eight to 12 years and from polynomial regressions in most cases the period lengths varied in between 8 to 12 years, 13 to 22 years and 23 to 37 years; and in rare cases those lengths were 38 years and more. Considering all the limitations in the observed data and 95% confidence interval for ARIMA model, a particular amount of annual rainfall occurred at about 12 years (i.e. almost resembling a Solar Cycle) and that might be concluded after minute analysis of more observed data. Recurrence of flood and drought years can be predicted from such analysis and also by following probability analysis of excess and deficit runs of annual rainfalls (Panda <em>et al</em>., 1996).</p><p>References:</p><p>Clarke, R.T.1973. Mathematical models in hydrology. FAO Irrigation and Drainage Paper No. 19. FAO of the United Nations, Rome. pp.101-108.</p><p>Panda, S.; Datta, D.K. and Das, M.N. (1996). Prediction of drought and flood years in Eastern India using length of runs of annual rainfall. J. Soil Wat. Conserv. India. 40(3&4):184-191.</p><p>          https://www.academia.edu/15034719/Prediction_of_drought_and_flood_years_in_eastern_%20%09India%20using_length_of_runs_of_annual_rainfall</p><p>Tomlinson, A.I. (1987). Wet and dry years – seven years on. Soil & Water. Winter 1987: 8-9. ISSN 0038-0695    </p>


2016 ◽  
Author(s):  
S. Goursaud ◽  
V. Masson-Delmotte ◽  
V. Favier ◽  
S. Preunkert ◽  
M. Fily ◽  
...  

Abstract. A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on sub-annual analyses of δ18O and major chemical components was combined with 6 reference years associated with nuclear tests and non-retreat of summer sea ice to build the initial ice core chronology (1947–2007), stressing uncertain counting for 8 years. We focus here on the resulting δ18O and accumulation records. With an average value of 21.9 ± 6.8 cm w.e. y-1, local accumulation shows multi-decadal bell-shaped variations, peaking in the 1980s, but no long-term trend. Similar results are obtained for δ18O, also characterized by a remarkably low (2.6 ‰) and variable amplitude of the seasonal cycle. The ice core data are compared with regional temperature and stake area accumulation measurements, variations in sea ice extent, and outputs from a high resolution atmospheric general circulation model including stable water isotopes (ECHAM5-wiso) and a regional atmospheric model (MAR), both nudged to ERA atmospheric reanalyses. A significant linear correlation is identified between δ18O and regional temperature data, especially in winter. No significant relationship appears with regional sea-ice extent nor with Dumont d'Urville wind speed. The model-data comparison highlights the inadequacy of ECHAM5-wiso simulations prior to 1979, possibly due to the lack of data assimilation to constrain atmospheric reanalyses. Systematic biases are identified in the ECHAM5-wiso simulation, such as an over-estimation of the mean accumulation rate and its inter-annual variability, a strong cold bias, and an under-estimation of the mean δ18O value and its inter-annual variability. As a result, relationships between simulated δ18O and temperature are weaker than observed. Such systematic precipitation and temperature biases are not displayed by MAR, suggesting that model resolution plays a key role along the Antarctic ice sheet coastal topography. Inter-annual variations in ECHAM5-wiso temperature and precipitation accurately capture signals from meteorological data and stake observations, and are used to refine the initial ice core chronology within 1 year. After this adjustment, remarkable positive (negative) δ18O anomalies are identified in the ice core record and the ECHAM5-wiso simulation, respectively in 1986 and 2002 (1998–99). Despite uncertainties associated with post-deposition processes and signal to noise issues in one single coastal ice core record, we conclude that one single ice core can correctly capture major annual anomalies in δ18O as well as multi-decadal variations. These findings highlight the importance of improving the network of coastal high resolution ice core records, and stress the skills and limitations of atmospheric models for accumulation and δ18O in coastal Antarctic areas, particularly important for the overall East Antarctic ice sheet mass balance.


Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 865-875 ◽  
Author(s):  
Weijian Zhou ◽  
Shaohua Song ◽  
G Burr ◽  
A J T Jull ◽  
Xuefeng Lu ◽  
...  

We have carried out a multiproxy analysis of high-resolution eutrophic peat/mud, sand dune, and loess/paleosol sequences covering the Holocene period in both southern and northern China, in order to test the hypothesis of a time-transgressive Holocene optimum in the East Asian monsoon area (An et al. 2000). Samples were radiocarbon dated to establish the chronology. Our results indicate that the Holocene optimum occurred between ∼10,000–5000 cal yr ago in both southern and northern China, consistent with a global pattern rather than simply a local expression. Our data also support the conclusion that the evolution of Holocene climate in China is consistent with changes in Northern Hemisphere solar radiation.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vasileios Gkinis ◽  
Bo M. Vinther ◽  
Trevor J. Popp ◽  
Thea Quistgaard ◽  
Anne-Katrine Faber ◽  
...  

AbstractWe report high resolution measurements of the stable isotope ratios of ancient ice (δ18O, δD) from the North Greenland Eemian deep ice core (NEEM, 77.45° N, 51.06° E). The record covers the period 8–130 ky b2k (y before 2000) with a temporal resolution of ≈0.5 and 7 y at the top and the bottom of the core respectively and contains important climate events such as the 8.2 ky event, the last glacial termination and a series of glacial stadials and interstadials. At its bottom part the record contains ice from the Eemian interglacial. Isotope ratios are calibrated on the SMOW/SLAP scale and reported on the GICC05 (Greenland Ice Core Chronology 2005) and AICC2012 (Antarctic Ice Core Chronology 2012) time scales interpolated accordingly. We also provide estimates for measurement precision and accuracy for both δ18O and δD.


2002 ◽  
Vol 35 ◽  
pp. 291-298 ◽  
Author(s):  
Rita Traversi ◽  
Silvia Becagli ◽  
Emiliano Castellano ◽  
Alessio Migliori ◽  
Mirko Severi ◽  
...  

AbstractFast ion chromatographic (FIC) analysis of the first European Project for Ice Coring in Antarctica (EPICA) Dome C ice core (788m deep) was used to obtain high-resolution profiles for Cl–, NO3– and SO42–, spanning the last 45000 years. About 19 000 determinations for each component, with an average resolution of 4.0 cm, were performed in the field on continuously melted firn- and ice-core sections. the measured core covers the Holocene, the glacial/interglacial transition and about one-third of the last ice age. In the glacial period, mean concentrations of 93.8, 24.4 and 178.4 mg L–1 were calculated for Cl–, NO3– and SO42–, respectively. the mean levels significantly increase in the Last Glacial Maximum (LGM), when these compounds reach values of 149.6, 53.9 and 219.3 mg L–1. During the glacial/interglacial transition, the mean concentrations quickly decrease reaching the typical Holocene values of 19.1, 12.9 and 93.3 mg L–1, for Cl–, NO3– and SO42–, respectively. All species settle on Holocene-like values about 4000 years before the beginning of the warm period (from the isotopic curve) showing a low (chloride) and no (nitrate and sulphate) sensitivity to Antarctic Cold Reversal climatic change. the sulphate decrease is consistent with the dilution factor due to the higher accumulation rate in the interglacial conditions (about 2.5), suggesting no significant change in source intensity or transport efficiency occurred for this component. on the contrary, the Holocene values for chloride and nitrate, being much lower than those measured in the LGM, suggest a source-intensity and transport-efficiency enhancement during the LGM and/or a more effective fixing of HCl and HNO3 in the snow layers through the neutralizing effect of the higher atmospheric dust load.


2013 ◽  
Vol 12 (2) ◽  
pp. 119-125

The present study concerns the impact of a change in the rainfall regime on surface and groundwater resources in an experimental watershed. The research is conducted in a gauged mountainous watershed (15.18 km2) that is located on the eastern side of Penteli Mountain, in the prefecture of Attica, Greece and the study period concerns the years from 2003 to 2008. The decrease in the annual rainfall depth during the last two hydrological years 2006-2007, 2007-2008 is 10% and 35%, respectively, in relation to the average of the previous years. In addition, the monthly distribution of rainfall is characterized by a distinct decrease in winter rainfall volume. The field measurements show that this change in rainfall conditions has a direct impact on the surface runoff of the watershed, as well as on the groundwater reserves. The mean annual runoff in the last two hydrological years has decreased by 56% and 75% in relation to the average of the previous years. Moreover, the groundwater level follows a declining trend and has dropped significantly in the last two years.


The Holocene ◽  
2021 ◽  
pp. 095968362199466
Author(s):  
Nannan Li ◽  
Arash Sharifi ◽  
Frank M Chambers ◽  
Yong Ge ◽  
Nathalie Dubois ◽  
...  

High-resolution proxy-based paleoenvironmental records derived from peatlands provide important insights into climate changes over centennial to millennial timescales. In this study, we present a composite climatic index (CCI) for the Hani peatland from northeastern China, based on an innovative combination of pollen-spore, phytolith, and grain size data. We use the CCI to reconstruct variations of the East Asian summer monsoon (EASM) intensity during the Holocene. This is accomplished with complete ensemble empirical mode decomposition (CEEMD), REDFIT, and cross-wavelet coherency analysis to reveal the periodicities (frequencies) of the multi-proxy derived CCI sequences and to assess potential external forcing of the EASM. The results showed that periodicities of ca. 300–350, 475, 600, 1075, and 1875 years were present in the Hani CCI sequence. Those periodicities are consistent with previously published periodicities in East Asia, indicating they are a product of external climate controls over an extensive region, rather than random variations caused by peatland-specific factors. Cross-wavelet coherency analysis between the decomposed CCI components and past solar activity reconstructions suggests that variations of solar irradiation are most likely responsible for the cyclic characteristics at 500-year frequency. We propose a conceptual model to interpret how the sun regulates the monsoon climate via coupling with oceanic and atmospheric circulations. It seems that slight solar irradiation changes can be amplified by coupling with ENSO events, which result in a significant impact on the regional climate in the East Asian monsoon area.


Sign in / Sign up

Export Citation Format

Share Document