scholarly journals Temperate Oligocene surface ocean conditions offshore Cape Adare, Ross Sea, Antarctica

2020 ◽  
Author(s):  
Frida S. Hoem ◽  
Luis Valero ◽  
Dimitris Evangelinos ◽  
Carlota Escutia ◽  
Bella Duncan ◽  
...  

Abstract. Antarctic continental ice masses fluctuated considerably in size during the elevated atmospheric CO2 concentrations (~ 600–800 ppm) of the Oligocene “coolhouse”. To evaluate the role of ocean conditions to the Oligocene ice sheet variability requires understanding of past ocean conditions around the ice sheet. While warm ocean conditions have been reconstructed for the Oligocene Wilkes Land region, questions arise on the geographical extent of that warmth. Currently, we lack data on surface ocean conditions from circum-Antarctic locations, and ice-proximal to ice-distal temperature gradients are poorly documented. In this study, we reconstruct past surface ocean conditions from glaciomarine sediments recovered from the Deep Sea Drilling Project (DSDP) Site 274, offshore the Ross Sea continental margin. This site offshore Cape Adare is ideally located to characterise the Oligocene regional surface ocean conditions, as it is situated between the colder, ice-proximal Ross Sea continental shelf, and the warm-temperate Wilkes Land Margin in the Oligocene. We improve the existing age model of DSDP Site 274 using integrated bio- and magnetostratigraphy. Subsequently, we analyse dinoflagellate cyst assemblages and lipid biomarkers (TEX86) to reconstruct surface paleoceanographic conditions during the Oligocene (33.7–25.4 Ma). Both TEX86-based sea surface temperature (SST) and microplankton results show temperate (10–17 °C ± 5.2 °C) surface ocean conditions at Site 274 throughout the Oligocene. Increasingly similar oceanographic conditions between offshore Wilkes Land margin and Cape Adare developed towards the late Oligocene (26.5–25.4 Ma), likely in consequence of the widening of the Tasmanian Gateway, which resulted in more interconnected ocean basins and frontal systems. To maintain marine terminations of terrestrial ice sheets in a proto-Ross Sea with as warm offshore SST as our data suggests, requires a strong ice flux fed by intensive precipitation during colder orbital states in the Antarctic hinterland, but with extensive surface melt of terrestrial ice during warmer orbital states.

2022 ◽  
pp. 389-521
Author(s):  
Richard H. Levy ◽  
Aisling M. Dolan ◽  
Carlota Escutia ◽  
Edward G.W. Gasson ◽  
Robert M. McKay ◽  
...  

2020 ◽  
Author(s):  
Frida S. Hoem ◽  
Luis Valero ◽  
Dimitris Evangelinos ◽  
Carlota Escutia ◽  
Bella Duncan ◽  
...  

2017 ◽  
Author(s):  
Peter K. Bijl ◽  
Alexander J. P. Houben ◽  
Julian D. Hartman ◽  
Jörg Pross ◽  
Ariadna Salabarnada ◽  
...  

Abstract. Next to atmospheric CO2 concentrations, oceanographic conditions are a critical factor determining the stability of Antarctic marine-terminating ice sheets. The Oligocene and Miocene epochs (~ 34–5 Ma) were time intervals with atmospheric CO2 concentrations between those of present-day and those expected for the near future. As such, these time intervals may bear information to resolve the uncertainties that still exist in the projection of future ice-sheet volume decline. We present organic-walled dinoflagellate cyst (dinocyst) assemblages from chronostratigraphically well-constrained Oligocene to mid-Miocene sediments from Integrated Ocean Drilling Program Expedition (IODP) Site U1356. Situated offshore the Wilkes Land continental margin, East Antarctica, the sediment core has archived past dynamics of an ice sheet that is today mostly grounded below sea level. We interpret dinocyst assemblages in terms of paleoceanographic change on different time scales, i.e., on glacial-interglacial and long-term variability. Sea-ice indicators occur only for the first 1.5 Ma following the full Antarctic continental glaciation during the early Oligocene, and after the Middle Miocene Climatic Optimum. During the remainder of the Oligocene and Miocene dinocysts suggest a weaker-than-modern sea-ice season. The assemblages generally bear strong similarity to present-day open-ocean, high-nutrient settings north of the sea ice edge, with episodic dominance of temperate species similar to the present-day subtropical front. Oligotrophic and temperate surface waters prevailed over the site notably during interglacial time intervals, suggesting that the position of the (subpolar) oceanic frontal systems have varied in concordance with Oligocene-Miocene glacial-interglacial climate variability.


2018 ◽  
Vol 14 (7) ◽  
pp. 1015-1033 ◽  
Author(s):  
Peter K. Bijl ◽  
Alexander J. P. Houben ◽  
Julian D. Hartman ◽  
Jörg Pross ◽  
Ariadna Salabarnada ◽  
...  

Abstract. Next to atmospheric CO2 concentrations, ice-proximal oceanographic conditions are a critical factor for the stability of Antarctic marine-terminating ice sheets. The Oligocene and Miocene epochs (∼ 34–5 Myr ago) were time intervals with atmospheric CO2 concentrations between those of present-day and those expected for the near future. As such, these past analogues may provide insights into ice-sheet volume stability under warmer-than-present-day climates. We present organic-walled dinoflagellate cyst (dinocyst) assemblages from chronostratigraphically well-constrained Oligocene to mid-Miocene sediments from Integrated Ocean Drilling Program (IODP) Site U1356. Situated offshore the Wilkes Land continental margin, East Antarctica, the sediments from Site U1356 have archived the dynamics of an ice sheet that is today mostly grounded below sea level. We interpret dinocyst assemblages in terms of paleoceanographic change on different timescales, i.e. with regard to both glacial–interglacial and long-term variability. Our record shows that a sea-ice-related dinocyst species, Selenopemphix antarctica, occurs only for the first 1.5 Myr of the early Oligocene, following the onset of full continental glaciation on Antarctica, and after the Mid-Miocene Climatic Optimum. Dinocysts suggest a weaker-than-modern sea-ice season for the remainder of the Oligocene and Miocene. The assemblages generally bear strong similarity to present-day open-ocean, high-nutrient settings north of the sea-ice edge, with episodic dominance of temperate species similar to those found in the present-day subtropical front. Oligotrophic and temperate surface waters prevailed over the site notably during interglacial times, suggesting that the positions of the (subpolar) oceanic frontal systems have varied in concordance with Oligocene–Miocene glacial–interglacial climate variability.


2017 ◽  
Author(s):  
Ariadna Salabarnada ◽  
Carlota Escutia ◽  
Ursula Röhl ◽  
C. Hans Nelson ◽  
Robert McKay ◽  
...  

Abstract. The late Oligocene experienced atmospheric concentrations of CO2 between 400 and 750 ppm, which are within the IPCC projections for this century, assuming unabated CO2 emissions. However, Antarctic ice sheet and Southern Ocean paleoceanographic configurations during the late Oligocene are not well resolved, but are important to understand the influence of high-latitude Southern Hemisphere feedbacks on global climate under such CO2 scenarios. Here, we present late Oligocene (26–25 Ma) ice sheet and paleoceanographic reconstructions recorded in sediments recovered by IODP Site U1356, offshore of the Wilkes Land margin in East Antarctica. Our study, based on a combination of sediment facies analysis, physical properties, and geochemical parameters, shows that glacial and interglacial sediments are continuously reworked by bottom-currents, with maximum velocities occurring during the interglacial periods. Glacial sediments record poorly ventilated, low-oxygenation bottom water conditions, interpreted to represent a northward shift of westerly winds and surface oceanic fronts. During interglacial times, more oxygenated and ventilated conditions prevailed, which suggests enhanced mixing of the water masses with enhanced current velocities. Micritic limestone intervals within some of the interglacial facies represent warmer paleoclimatic conditions when less corrosive warmer northern component water (e.g. North Atlantic sourced deep water) had a greater influence on the site. The lack of iceberg rafted debris (IRD) throughout the studied interval contrasts with early Oligocene and post-Oligocene sections from Site U1356 and with late Oligocene strata from the Ross Sea (CRP and DSDP 270), which contain IRD and evidence for coastal sea ice and glaciers. These observations, supported by elevated paleotemperatures and the absence of sea-ice, suggest that between 26 and 25 Ma reduced glaciers or ice caps occupied the terrestrial lowlands of the Wilkes Land margin. Unlike today, the continental shelf was not over-deepened, and thus marine-based ice sheet expansion was likely limited to coastal regions. Combined, these data suggest that ice sheets in the Wilkes Subglacial Basin were largely land-based, and therefore retreated as a consequence of surface melt during late Oligocene, rather than direct ocean forcing and marine ice sheet instability processes as it did in younger past warm intervals. Spectral analysis on late Oligocene sediments from the eastern Wilkes Land margin show that the glacial-interglacial cyclicity and resulting displacements of the Southern Ocean frontal systems between 26–25 Ma were forced by obliquity.


1998 ◽  
Vol 27 ◽  
pp. 275-280 ◽  
Author(s):  
Akira Nishimura ◽  
Toru Nakasone ◽  
Chikara Hiramatsu ◽  
Manabu Tanahashi

Based on sedimenlological and micropaleontological work on three sediment cores collected at about 167° Ε in the western Ross Sea, Antarctica, and accelerator mass spectrometer l4C ages of organic carbon, we have reconstructed environmental changes in the area during the late Quaternary. Since 38 ka BP at latest, this area was a marine environment with low productivity. A grounded ice sheet advanced and loaded the sediments before about 30-25 ka BP. After 25 ka BP, the southernmost site (76°46'S) was covered by floating ice (shelf ice), preventing deposition of coarse terrigenous materials and maintaining a supply of diatom tests and organic carbon until 20 ka BP. The northernmost site (74°33'S) was in a marine environment with a moderate productivity influenced by shelf ice/ice sheet after about 20 ka BP. Since about 10 ka BP, a sedimentary environment similar to the present-day one has prevailed over this area.


2021 ◽  
Vol 15 (3) ◽  
pp. 1627-1644
Author(s):  
Andrea J. Pain ◽  
Jonathan B. Martin ◽  
Ellen E. Martin ◽  
Åsa K. Rennermalm ◽  
Shaily Rahman

Abstract. Accelerated melting of the Greenland Ice Sheet has increased freshwater delivery to the Arctic Ocean and amplified the need to understand the impact of Greenland Ice Sheet meltwater on Arctic greenhouse gas budgets. We evaluate subglacial discharge from the Greenland Ice Sheet for carbon dioxide (CO2) and methane (CH4) concentrations and δ13C values and use geochemical models to evaluate subglacial CH4 and CO2 sources and sinks. We compare discharge from southwest (a sub-catchment of the Isunnguata Glacier, sub-Isunnguata, and the Russell Glacier) and southern Greenland (Kiattut Sermiat). Meltwater CH4 concentrations vary by orders of magnitude between sites and are saturated with respect to atmospheric concentrations at Kiattut Sermiat. In contrast, meltwaters from southwest sites are supersaturated, even though oxidation reduces CH4 concentrations by up to 50 % during periods of low discharge. CO2 concentrations range from supersaturated at sub-Isunnguata to undersaturated at Kiattut Sermiat. CO2 is consumed by mineral weathering throughout the melt season at all sites; however, differences in the magnitude of subglacial CO2 sources result in meltwaters that are either sources or sinks of atmospheric CO2. At the sub-Isunnguata site, the predominant source of CO2 is organic matter (OM) remineralization. However, multiple or heterogeneous subglacial CO2 sources maintain atmospheric CO2 concentrations at Russell but not at Kiattut Sermiat, where CO2 is undersaturated. These results highlight a previously unrecognized degree of heterogeneity in greenhouse gas dynamics under the Greenland Ice Sheet. Future work should constrain the extent and controls of heterogeneity to improve our understanding of the impact of Greenland Ice Sheet melt on Arctic greenhouse gas budgets, as well as the role of continental ice sheets in greenhouse gas variations over glacial–interglacial timescales.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael E. Weber ◽  
Nicholas R. Golledge ◽  
Chris J. Fogwill ◽  
Chris S. M. Turney ◽  
Zoë A. Thomas

AbstractEmerging ice-sheet modeling suggests once initiated, retreat of the Antarctic Ice Sheet (AIS) can continue for centuries. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and timescale of responses. Iceberg-rafted debris data from Iceberg Alley identify eight retreat phases after the Last Glacial Maximum that each destabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently re-stabilized equally rapidly. This dynamic response of the AIS is supported by (i) a West Antarctic blue ice record of ice-elevation drawdown >600 m during three such retreat events related to globally recognized deglacial meltwater pulses, (ii) step-wise retreat up to 400 km across the Ross Sea shelf, (iii) independent ice sheet modeling, and (iv) tipping point analysis. Our findings are consistent with a growing body of evidence suggesting the recent acceleration of AIS mass loss may mark the beginning of a prolonged period of ice sheet retreat and substantial global sea level rise.


Sign in / Sign up

Export Citation Format

Share Document