scholarly journals Fluctuations of Glaciar Esperanza Norte in the north Patagonian Andes of Argentina during the past 400 yr

2012 ◽  
Vol 8 (3) ◽  
pp. 1079-1090 ◽  
Author(s):  
L. Ruiz ◽  
M. H. Masiokas ◽  
R. Villalba

Abstract. The number of studies of Little Ice Age (LIA) glacier fluctuations in southern South America has increased in recent years but is largely biased towards sites in the south Patagonian Andes. In this paper we present a detailed record of length and areal fluctuations of Glaciar Esperanza Norte (GEN) in the north Patagonian Andes of Argentina during the past four centuries. The GEN record was reconstructed through the dendro-geomorphological dating of moraines and the analysis of satellite imagery, aerial photographs and documentary material complemented with extensive field surveys. The maximum LIA extent at GEN was associated with an outer moraine dated to the mid 17th century. At least 19 subsequent readvances or standstills evidenced by morainic ridges were identified inside the most extensive LIA moraine. The dating and spacing of these moraines and the additional information available indicate that the ice front retreated much more rapidly during the 20th century than during earlier centuries. Comparison with the record of LIA fluctuations of Glaciar Frías, an ice mass of similar characteristics located 110 km to the north of GEN, shows a similar pattern of recession over the past 400 yr. Both glacier records have the peak LIA event occurring roughly during the same interval (early-mid 17th century) and show a minor readvance during the 1970s, but there are still a few discrepancies in the dating of some inner moraines. These differences may be due to local, specific factors or associated with the inherent uncertainties in the dating of the moraines. The chronologies of GEN and Frías are among the most detailed currently available in Patagonia, but a larger number of study sites is needed to develop robust, regionally representative glacier chronologies. Detailed glaciological, geomorphological and meteorological data are also needed to understand the glacier-climate relationships in this region and develop reliable paleoclimatic reconstructions.

2011 ◽  
Vol 7 (6) ◽  
pp. 4073-4104
Author(s):  
L. Ruiz ◽  
M. H. Masiokas ◽  
R. Villalba

Abstract. The number of studies of Little Ice Age (LIA) glacier fluctuations in Southern South America has increased in recent years but is largely biased towards sites in the South Patagonian Andes. In this paper we present a detailed record of length and areal fluctuations of Glaciar Esperanza Norte (GEN), in the North Patagonian Andes of Argentina, during the past four centuries. The GEN record was reconstructed through the dendro-geomorphological dating of moraines and the analysis of satellite imagery, aerial photographs and documentary material complemented with extensive field surveys. The maximum LIA extent at GEN was associated with an outer moraine dated to the mid 17th century. At least 19 subsequent readvances or standstills evidenced by morainic ridges were identified inside the most extensive LIA moraine. The dating and spacing of these moraines and the additional information available indicate that the ice front retreated much more rapidly during the 20th century than during earlier centuries. Comparison with the record of LIA fluctuations of Glaciar Frías, an ice mass of similar characteristics located 110 km to the north of GEN, shows a similar pattern of recession over the past 400 yr. Both glacier records have the peak LIA event occurring roughly during the same interval and show a minor readvance during the 1970s, but there are still a few discrepancies in the dating of some inner moraines. These differences may be due to local, specific factors or associated with the inherent uncertainties in the dating of the moraines. The chronologies of GEN and Frías are among the most detailed currently available in Patagonia, but a larger number of study sites is needed to develop robust, regionally representative glacier chronologies. Detailed glaciological, geomorphological and meteorological data are also needed to understand the glacier-climate relationships in this region and develop reliable paleoclimatic reconstructions.


2010 ◽  
Vol 73 (1) ◽  
pp. 96-106 ◽  
Author(s):  
M.H. Masiokas ◽  
B.H. Luckman ◽  
R. Villalba ◽  
A. Ripalta ◽  
J. Rabassa

Little Ice Age (LIA) fluctuations of Glaciar R"o Manso, north Patagonian Andes, Argentina are studied using information from previous work and dendrogeomorphological analyses of living and subfossil wood. The most extensive LIA expansion occurred between the late 1700s and the 1830"1840s. Except for a massive older frontal moraine system apparently predating ca. 2240 14C yr BP and a small section of a south lateral moraine ridge that is at least 300 yr old, the early nineteenth century advance overrode surficial evidence of any earlier LIA glacier events. Over the past 150 yr the gently sloping, heavily debris-covered lower glacier tongue has thinned significantly, but several short periods of readvance or stasis have been identified and tree-ring dated to the mid-1870s, 1890s, 1900s, 1920s, 1950s, and the mid-1970s. Ice mass loss has increased in recent years due to calving into a rapidly growing proglacial lake. The neighboring debris-free and land-based Glaciar Fr"as has also retreated markedly in recent years but shows substantial differences in the timing of the peak LIA advance (early 1600s). This indicates that site-specific factors can have a significant impact on the resulting glacier records and should thus be considered carefully in the development and assessment of regional glacier chronologies.


2007 ◽  
Vol 3 (2) ◽  
pp. 237-242 ◽  
Author(s):  
D. Yu. Demezhko ◽  
I. V. Golovanova

Abstract. This investigation is based on a study of two paleoclimatic curves obtained in the Urals (51–59° N, 58–61° E): i) a ground surface temperature history (GSTH) reconstruction since 800 A.D. and ii) meteorological data for the last 170 years. Temperature anomalies measured in 49 boreholes were used for the GSTH reconstruction. It is shown that a traditional averaging of the histories leads to the lowest estimates of amplitude of past temperature fluctuations. The interval estimates method, accounting separately for the rock's thermal diffusivity variations and the influence of a number of non-climatic causes, was used to obtain the average GSTH. Joint analysis of GSTH and meteorological data bring us to the following conclusions. First, ground surface temperatures in the Medieval maximum during 1100–1200 were 0.4 K higher than the 20th century mean temperature (1900–1960). The Little Ice Age cooling was culminated in 1720 when surface mean temperature was 1.6 K below the 20th century mean temperature. Secondly, contemporary warming began approximately one century prior to the first instrumental measurements in the Urals. The rate of warming was +0.25 K/100 years in the 18th century, +1.15 K/100 years in the 19th and +0.75 K/100 years in the first 80 years of the 20th century. Finally, the mean rate of warming increased in the final decades of 20th century. An analysis of linear regression coefficients in running intervals of 21 and 31 years, shows that there were periods of warming with almost the same rates in the past, including the 19th century.


The Holocene ◽  
2012 ◽  
Vol 22 (12) ◽  
pp. 1405-1412 ◽  
Author(s):  
Claudia Fensterer ◽  
Denis Scholz ◽  
Dirk Hoffmann ◽  
Christoph Spötl ◽  
Jesús M Pajón ◽  
...  

Here we present the first high-resolution δ18O record of a stalagmite from western Cuba. The record reflects precipitation variability in the northwestern Caribbean during the last 1.3 ka and exhibits a correlation to the Atlantic Multidecadal Oscillation (AMO). This suggests a relationship between Caribbean rainfall intensity and North Atlantic sea-surface temperature (SST) anomalies. A potential mechanism for this relationship may be the strength of the Thermohaline Circulation (THC). For a weaker THC, lower SSTs in the North Atlantic possibly lead to a southward shift of the Intertropical Convergence Zone and drier conditions in Cuba. Thus, this Cuban stalagmite records drier conditions during cold phases in the North Atlantic such as the ‘Little Ice Age’. This study contributes to the understanding of teleconnections between North Atlantic SSTs and northern Caribbean climate variability during the past 1.3 ka.


2008 ◽  
Vol 54 (184) ◽  
pp. 131-144 ◽  
Author(s):  
Bea Csatho ◽  
Toni Schenk ◽  
C.J. Van Der Veen ◽  
William B. Krabill

AbstractRapid thinning and velocity increase on major Greenland outlet glaciers during the last two decades may indicate that these glaciers became unstable as a consequence of the Jakobshavn effect (Hughes, 1986), with terminus retreat leading to increased discharge from the interior and consequent further thinning and retreat. To assess whether recent trends deviate from longer-term behavior, we measured glacier surface elevations and terminus positions for Jakobshavn Isbræ, West Greenland, using historical photographs acquired in 1944, 1953, 1959, 1964 and 1985. These results were combined with data from historical records, aerial photographs, ground surveys, airborne laser altimetry and field mapping of lateral moraines and trimlines, to reconstruct the history of changes since the Little Ice Age (LIA). We identified three periods of rapid thinning since the LIA: 1902–13, 1930–59 and 1999–present. During the first half of the 20th century, the calving front appears to have been grounded and it started to float during the late 1940s. The south and north tributaries exhibit different behavior. For example, the north tributary was thinning between 1959 and 1985 during a period when the calving front was stationary and the south tributary was in balance. The record of intermittent thinning, combined with changes in ice-marginal extent and position of the calving front, together with changes in velocity, imply that the behavior of the lower parts of this glacier represents a complex ice-dynamical response to local climate forcings and interactions with drainage from the interior.


2018 ◽  
Vol 58 (4) ◽  
pp. 448-461
Author(s):  
O. N. Solomina ◽  
I. S. Bushueva ◽  
P. D. Polumieva ◽  
E. A. Dolgova ◽  
M. D. Dokukin

On the basis of dendrochronological, lichenometric and historical data with the use of Earth remote sensing materials, the evolution of the Donguz-Orun Glacier has been reconstructed over the past centuries. In this work we used aerial photographs of 1957, 1965, 1981, 1987, satellite image of 2009, as well as descriptions, photographs, maps and plans of the glacier of the 19th and 20th centuries, data of instrumental measurements of the glacier end position in the second half of the 20th – early 21st centuries, dendrochronological dating of pine on the front part of the valley, and juniper to date coastal moraines, and the results of lichenometry studies. It has been established that the Donguz-Orun Glacier in the past had several clearly marked advances about 100, 200 and more than 350 years ago, which are expressed in relief in the form of uneven-aged coastal moraines. Despite the fact that the Donguz-Orun Glacier differs from many mountain-valley glaciers of the Caucasus primarily by its predominantly avalanche feeding and a moraine cover, almost entirely covering its surface, the main periods of its advances are consistent with the known large fluctuations of mountain glaciers during the Little Ice Age in the early 20th, early 19th, and, probably, in the middle of the 17th century. However, unlike most other Caucasian glaciers, the Donguz-Orun Glacier advanced in the 1970s–2000s. Te scale of its degradation from the end of the 19th to the beginning of the 21st century is also uncharacteristic for the Caucasus: the reduction in the length for longer than a century period is only about 100 m.


2012 ◽  
Vol 27 ◽  
pp. 1-68 ◽  
Author(s):  
Anker Weidick ◽  
Ole Bennike ◽  
Michele Citterio ◽  
Niels Nørgaard-Pedersen

The Nuup Kangerlua region in southern West Greenland became deglaciated in the early Holocene and by the mid-Holocene, the margin of the Inland Ice was located east of its present position. Discussion of late Holocene changes in the frontal positions of outlets relies on descriptions, paintings, photographs, maps, data from investigations of Norse ruins, aerial photographs and satellite images. The Kangiata Nunaata Sermia glacier system has receded over 20 km during the last two centuries, indicating a marked response to climatic fluctuations during and since the Little Ice Age (LIA). A large advance between 1700 and 1800 was followed by rapid recession in the first half of the 1800s. Limited data from c. 1850–1920 indicate that although the long-term position of the glacier front remained c. 10–12 km behind the LIA maximum, the late 1800s and the early 1900s may have seen a recession followed by an advance that resulted in a pronounced moraine system. The ice-dammed lake Isvand formed during the LIA maximum when meltwater from the western side of Kangiata Nunaata Sermia drained to the Ameralla fjord in the west. This is in contrast to the drainage pattern before the 1700s, when water probably drained to Kangersuneq in the north. Thinning of Kangiata Nunaata Sermia resulted in total drainage of Isvand between 2000 and 2010 and the discharge of water through Austmannadalen has now returned to the same level as that in medieval times. Other outlets in the region, such as Akullersuup Sermia and Qamanaarsuup Sermia have varied in phase with Kangiata Nunaata Sermia, but with amplitudes of only a few kilometres. In contrast, Narsap Sermia has been nearly stationary and Kangilinnguata Sermia may have advanced until the middle of the 1900s. Lowland marine outlets in south-western Greenland were characterised by large amplitude changes during the Neoglacial. Extreme examples, in addition to Kangiata Nunaata Sermia, are Eqalorutsit Killiit Sermiat at the head of Nordre Sermilik fjord in southern Greenland and Jakobshavn Isbræ in Disko Bugt, central West Greenland. The Neoglacial advances appear to have occurred at different times, although this may in part reflect the limited information about fluctuations prior to the 1930s. The differences could also reflect variations in mass balance of different sectors of the ice sheet, different subglacial dynamics or topographical factors. The lowland areas are separated by uplands and highlands that extend below the marginal part of the Inland Ice; in such areas, the outlets have been advancing almost up to the present, so that the position of the glacier front around AD 2000 broadly coincides with the LIA maximum. Charting the fluctuations of the outlets thus illustrates the large variability of the glaciers' response to changing climate but it is notable that the number of advancing outlets has decreased markedly in recent years.


2007 ◽  
Vol 3 (1) ◽  
pp. 1-17
Author(s):  
D. Yu. Demezhko ◽  
I. V. Golovanova

Abstract. This investigation is based on a study of two paleoclimatic curves obtained in the Urals (51–59° N, 58–61° E): i) a ground surface temperature history (GSTH) reconstruction since 800 AD and ii) meteorological data for the last 170 years. Temperature anomalies measured in 49 boreholes were used for the GSTH reconstruction. It is shown that a traditional averaging of the histories leads to the lowest estimates of amplitude of past temperature fluctuations. The interval estimates method, accounting separately for the rock's thermal diffusivity variations and the influence of a number of non-climatic causes, was used for obtaining the average GSTH. Joint analysis of GSTH and meteorological data bring us to the following conclusions. First, ground surface temperatures in the Medieval maximum during 1100–1200 was 0.38 K higher than the 20th century mean temperature (1900–1960). The Little Ice Age cooling was culminated in 1720 when surface mean temperature was 1.58 K below than the 20th century mean temperature. Secondly, contemporary warming began approximately one century prior to the first instrumental measurements in the Urals. The rate of warming was +0.25K/100years in the 18th century, +1.15 K/100years in the 19th and +0.75 K/100years in the first 80 years of the 20th. Finally, the mean rate of temperature warming increased in final decades of 20th century. An analysis of linear regression coefficients in running intervals of 11, 21 and 31 years, shows that there were periods of warming with almost the same rates in the past, including the 19th century.


Fontes Nissae ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 16-25
Author(s):  
Michaela Ramešová ◽  
Štěpán Valecký

The text deals with Jesuit missions to the north of Bohemia in the second half of the 17 th century with an emphasis on the missionary activities of the house of the third probation i n Telč. With regard to the process of re-Catholicization in the second half of the 17th century, Frýdlant (Friedland) and Liberec (Reichenberg) represented a specific region, as is evident from Jesuit sources about missions to the local region. Missions from Telč to northern Bohemia, which took place regularly in the second half of the 17th century, played a significant role in the process of re-Catholicization of the area. The Jesuits of Telč often headed to localities near the borders or in mountaino us areas, where non-Catholic religions persisted. It is probable some of the transitions to Catholicism were only of formal nature. Unlike in the past, however, the missionaries focused exclusively on non-repressive ways of converting to the faith to prevent further emigration. Their focus was on helping with the parish administration, confessions, and promoting Catholic customs. Missionary work also included acts of charity and caring for one’s neighbor.


2020 ◽  
Author(s):  
Clare M. Boston ◽  
Harold Lovell ◽  
Paul Weber ◽  
Benjamin M. P. Chandler ◽  
Timothy T. Barrows ◽  
...  

<p>Recently deglaciated forelands contain a wealth of geomorphological and sedimentological data that can provide key information about glacier-climate relationships. Mountain glaciers are particularly important indicators of climate change due to their short response times, which means that their forelands provide a sub-decadal record of changes in glacier size and climate-related dynamics. In this contribution, we examine the glacial geomorphological and sedimentological record at Østre Svartisen, an Arctic plateau icefield in Norway, and discuss temporal variations in glacier dynamics and processes of sediment deposition in response to climate warming since the Little Ice Age (c.1750). We focus specifically on the northeastern sector of the icefield and include two separate cirque/valley glaciers immediately to the north. Differences in landform-sediment assemblages are apparent both within and between forelands relating to changes in topography as well as glacier dynamics. Satellite images and old aerial photographs are also used to investigate differences in the rates of glacier demise across the study area. This evidence enables links to be made between landform generation, bed morphology, glacier dynamics, and glacier response to climate change, which furthers understanding of plateau icefield and outlet glacier behaviour in a warming climate.</p>


Sign in / Sign up

Export Citation Format

Share Document