scholarly journals The importance of Northern Peatlands in global carbon systems during the Holocene

2009 ◽  
Vol 5 (2) ◽  
pp. 1231-1258 ◽  
Author(s):  
Y. Wang ◽  
N. T. Roulet ◽  
S. Frolking ◽  
L. A. Mysak

Abstract. We applied an inverse model to simulate global carbon (C) cycle dynamics during the Holocene period using atmospheric carbon dioxide (CO2) concentrations reconstructed from Antarctic ice cores and prescribed C accumulation rates of Northern Peatlands (NP) as inputs. Previous studies indicated that different sources could contribute to the 20 parts per million by volume (ppmv) atmospheric CO2 increase over the past 8000 years. These sources of C include terrestrial release of 40–200 petagram C (PgC, 1 petagram=1015 gram), deep oceanic adjustment to a 500 PgC terrestrial biomass buildup early in this interglacial period, and anthropogenic land-use and land-cover changes of unknown magnitudes. Our study shows that the prescribed peatland C accumulation significantly modifies our previous understanding of Holocene C cycle dynamics. If the buildup of the NP is considered, the terrestrial pool becomes the C sink of about 160–280 PgC over the past 8000 years, and the only C source for the terrestrial and atmospheric C increases is presumably from the deep ocean due to calcium carbonate compensation. Future studies need to be conducted to constrain the basal times and growth rates of the NP C accumulation in the Holocene. These research endeavors are challenging because they need a dynamically-coupled peatland simulator to be constrained with the initiation time and reconstructed C reservoir of the NP. Our results also suggest that the huge reservoir of deep ocean C explains the major variability of the glacial-interglacial C cycle dynamics without considering the anthropogenic C perturbation.

2009 ◽  
Vol 5 (4) ◽  
pp. 683-693 ◽  
Author(s):  
Y. Wang ◽  
N. T. Roulet ◽  
S. Frolking ◽  
L. A. Mysak

Abstract. We applied an inverse model to simulate global carbon (C) cycle dynamics during the Holocene period using atmospheric carbon dioxide (CO2) concentrations reconstructed from Antarctic ice cores and prescribed C accumulation rates of Northern Peatlands (NP) as inputs. Previous studies indicated that different sources could contribute to the 20 parts per million by volume (ppmv) atmospheric CO2 increase over the past 8000 years. These sources of C include terrestrial release of 40–200 petagram C (PgC, 1 petagram=1015 gram), deep oceanic adjustment to a 500 PgC terrestrial biomass buildup early in this interglacial period, and anthropogenic land-use and land-cover changes of unknown magnitudes. Our study shows that the prescribed peatland C accumulation significantly modifies our previous understanding of Holocene C cycle dynamics. If the buildup of the NP is considered, the terrestrial pool becomes the C sink of about 160–280 PgC over the past 8000 years, and the only C source for the terrestrial and atmospheric C increases is presumably from the deep ocean due to calcium carbonate compensation. Future studies need to be conducted to constrain the basal times and growth rates of the NP C accumulation in the Holocene. These research endeavors are challenging because they need a dynamically-coupled peatland simulator to be constrained with the initiation time and reconstructed C reservoir of the NP. Our results also suggest that the huge reservoir of deep ocean C explains the major variability of the glacial-interglacial C cycle dynamics without considering the anthropogenic C perturbation.


2016 ◽  
Author(s):  
C. Frankenberg ◽  
S. S. Kulawik ◽  
S. Wofsy ◽  
F. Chevallier ◽  
B. Daube ◽  
...  

Abstract. In recent years, space-borne observations of atmospheric carbon-dioxide (CO2) have become increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network TCCON. Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the HIAPER Pole-to-Pole Observations (HIPPO) flights from January 2009 through September 2011 to validate CO2 measurements from satellites (GOSAT, TES, AIRS) and atmospheric inversion models (CarbonTracker CT2013B, MACC v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, esp. at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of −0.06 ppm and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20 and 50 atmospheric soundings have been averaged for GOSAT, TES and AIRS, respectively. Overall, we find that GOSAT soundings over the remote pacific ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO2 observations.


The Holocene ◽  
2011 ◽  
Vol 21 (5) ◽  
pp. 761-774 ◽  
Author(s):  
Zicheng Yu

This paper proposes a novel approach using basal peat ages and carbon (C) accumulation profiles from the world’s major peatland regions to decompose C flux terms from time-dependent C pool data observed from peat cores. Our peat-data syntheses show that the total peat C pools are 547 GtC, 50 GtC, and 15 GtC for northern, tropical and southern peatlands, respectively. The modeled net C balance (NCB) has a mean value of 41.8 TgC/yr for northern peatlands during the Holocene, ranging from 83.1 TgC/yr in the early Holocene around 9 ka (1 ka = 1000 cal. yr BP) to 21.5 TgC/yr around 2 ka, a temporal pattern mostly owing to the delayed effect of long-term decay of previously accumulated peat C. NCB from tropical and southern peatlands represents much smaller terms, mostly less than 10 TgC/yr. Northern peatlands represent about 90% of global total peatland C pool of 612 GtC and >90% of global peatland NCB. Our bottom-up global peatland synthesis indicates a decrease in rates of peatland area expansion and reduced CH4 emissions during the late Holocene, thus lending support for an anthropogenic source of late-Holocene CH4 rise. The C balance analysis of global peatland data indicates a cumulative net C uptake of 272 GtC in the early Holocene (11–7 ka), 151 GtC at 7–4 ka, and 116 GtC after 4 ka. The large cumulative fluxes and significant variations throughout the Holocene could greatly contribute to the observed atmospheric CO2 and δ13CO2 patterns derived from Antarctic ice cores. Thus, global mass-balance calculations or climate–carbon cycle simulations have to consider these large net C uptake terms from global peatlands and their variations over the Holocene.


2021 ◽  
Vol 17 (1) ◽  
pp. 507-528
Author(s):  
Shannon A. Bengtson ◽  
Laurie C. Menviel ◽  
Katrin J. Meissner ◽  
Lise Missiaen ◽  
Carlye D. Peterson ◽  
...  

Abstract. The last time in Earth's history when high latitudes were warmer than during pre-industrial times was the last interglacial period (LIG, 129–116 ka BP). Since the LIG is the most recent and best documented interglacial, it can provide insights into climate processes in a warmer world. However, some key features of the LIG are not well constrained, notably the oceanic circulation and the global carbon cycle. Here, we use a new database of LIG benthic δ13C to investigate these two aspects. We find that the oceanic mean δ13C was ∼ 0.2 ‰ lower during the LIG (here defined as 125–120 ka BP) when compared to the Holocene (7–2 ka BP). A lower terrestrial carbon content at the LIG than during the Holocene could have led to both lower oceanic δ13C and atmospheric δ13CO2 as observed in paleo-records. However, given the multi-millennial timescale, the lower oceanic δ13C most likely reflects a long-term imbalance between weathering and burial of carbon. The δ13C distribution in the Atlantic Ocean suggests no significant difference in the latitudinal and depth extent of North Atlantic Deep Water (NADW) between the LIG and the Holocene. Furthermore, the data suggest that the multi-millennial mean NADW transport was similar between these two time periods.


2013 ◽  
Vol 1 (1) ◽  
pp. 177-206
Author(s):  
S.-J. Kao ◽  
R. G. Hilton ◽  
K. Selvaraj ◽  
M. Dai ◽  
F. Zehetner ◽  
...  

Abstract. Geological sequestration of atmospheric carbon dioxide (CO2) can be achieved by the erosion of organic carbon (OC) from the terrestrial biosphere and its burial in long-lived marine sediments. Rivers on mountain islands of Oceania in the western Pacific have very high rates of OC export to the ocean, yet its preservation offshore remains poorly constrained. Here we use the OC content (Corg, %), radiocarbon (Δ14Corg) and stable isotope (δ13Corg) composition of sediments offshore Taiwan to assess the fate of terrestrial OC. We account for rock-derived fossil OC to assess the preservation of OC eroded from the terrestrial biosphere (non-fossil OC) during flood discharges (hyperpycnal river plumes) and when river inputs are dispersed more widely (hypopycnal). The Corg, Δ14Corg and δ13Corg of marine sediment traps and cores indicate that during flood discharges, terrestrial OC is transferred efficiently to the deep ocean and accumulates offshore with little evidence for terrestrial OC loss. In marine sediments fed by dispersive river inputs, the Corg, Δ14Corg and δ13Corg are consistent with mixing of marine OC and terrestrial OC and suggest that efficient preservation of terrestrial OC (> 70%) is also associated with hypopycnal delivery. Re-burial of fossil OC is pervasive. Our findings from Taiwan suggest that erosion and marine burial of terrestrial non-fossil OC may sequester > 8 TgC yr−1 across Oceania, a significant geological CO2 sink which requires better constraint. We postulate that mountain islands of Oceania provide strong link between tectonic uplift and the carbon cycle, one moderated by the climatic variability that controls terrestrial OC delivery to the ocean.


2021 ◽  
Author(s):  
Etienne Legrain ◽  
Emilie Capron ◽  
Frederic Parrenin

<p>The current and future anthropogenic-induced high-latitude warming will have global climatic implications due to polar ice mass loss, sea level rise and ocean circulation changes. However, uncertainty remains on future climate projections mainly due to an incomplete understanding of climate, cryosphere and carbon cycle feedback processes occurring at centennial to millennial- timescales. Progress can be achieved by exploring climate and environmental changes that occurred in the past. In the HOTCLIM project, we are studying past warm periods, also referred to as interglacials, which exhibit a polar warming comparable to that projected by 2100 due to specific combinations of orbital and CO<sub>2</sub> forcing. Especially, we are investigating the link between the carbon cycle dynamics and climate changes. To do so, we are combining (i) new analyses on the air trapped in Antarctic deep ice cores to inform on past changes in Antarctic climate and atmospheric CO2 concentrations (ii) climate and environmental data synthesis looking into the lower latitudes using terrestrial and oceanic archives (sea surface temperature, hydrological cycles, ocean circulation) (iii) an evaluation of outputs from climate models using the new comparison of the paleoclimatic datasynthesis and models output. The HOTCLIM project will improve our understanding of the natural climate variability and the processes involved during past periods associated with temperature changes comparable to projected future warming, hence helping improve climate projections</p><p>Here, we present the first results from the HOTCLIM project which is a multi-archive synthesis focused on the warm interval occurring between 190 and 243 ka BP, also refered to as Marine Isotopic Stage 7 (MIS 7). This warm period is of special interest because it follows the fastest transition between a cold (glacial) and a hot (interglacial) period of the last 800 000 ka, with a polar warming of 10 degrees in less than 5ka. We have compiled more than 30 oceanic cores, 9 speleothems and 3 ice cores covering the MIS 7 period. To compare them, we are now building a common chronology to these records. The use of combined continental (ice cores, speleothems) and oceanic (sediment cores) archives located on the whole surface of the Earth will allows to characterize (i) the amplitude and the temporal structure of the surface warming across the globe (ii) the contrast between oceanic and continental warming.</p>


2016 ◽  
Vol 371 (1696) ◽  
pp. 20150176 ◽  
Author(s):  
S. E. Page ◽  
A. Hooijer

Peatlands are a significant component of the global carbon (C) cycle, yet despite their role as a long-term C sink throughout the Holocene, they are increasingly vulnerable to destabilization. Nowhere is this shift from sink to source happening more rapidly than in Southeast Asia, and nowhere else are the combined pressures of land-use change and fire on peatland ecosystem C dynamics more evident nor the consequences more apparent. This review focuses on the peatlands of this region, tracing the link between deforestation and drainage and accelerating C emissions arising from peat mineralization and fire. It focuses on the implications of the recent increase in fire occurrence for air quality, human health, ecosystem resilience and the global C cycle. The scale and controls on peat-driven C emissions are addressed, noting that although fires cause large, temporary peaks in C flux to the atmosphere, year-round emissions from peat mineralization are of a similar magnitude. The review concludes by advocating land management options to reduce future fire risk as part of wider peatland management strategies, while also proposing that this region's peat fire dynamic could become increasingly relevant to northern peatlands in a warming world. This article is part of the themed issue ‘The interaction of fire and mankind’.


2020 ◽  
Author(s):  
Christoph Nehrbass-Ahles ◽  
Jochen Schmitt ◽  
Bernhard Bereiter ◽  
Sarah Eggleston ◽  
Lars Mächler ◽  
...  

<p>There is a general consensus in the scientific community that Greenlandic ice cores do not allow for reconstruction of past atmospheric carbon dioxide (CO<sub>2</sub>) concentrations due to artifacts likely caused by <em>in-situ</em> production of excess CO<sub>2</sub> from both organic and inorganic carbon compounds within the ice archive. In the case of Antarctic ice cores such processes are thought to be insignificant, making Antarctic ice cores the only direct archive of past atmospheric CO<sub>2</sub> concentrations beyond modern observations. However, with increasing numbers of high-precision CO<sub>2</sub> reconstructions from multiple Antarctic ice cores – mostly covering specific time intervals during the last 130 ka – it has become evident that offsets in CO<sub>2</sub> are not unique to Greenland ice cores. Over the last decade evidence is mounting that small systematic offsets of typically 2-10 ppm exist among different Antarctic CO<sub>2</sub> records covering the same time period. Because CO<sub>2</sub> is well-mixed within the atmosphere different ice cores should agree with each other within their measurement uncertainty, independent of the ice core drilling site. The unambiguous detection of such offsets between different ice cores is only possible in the absence of strong atmospheric trends, such as during interglacial periods. Here, we take a closer look at CO<sub>2</sub> offsets among records available for the Holocene and the Last Interglacial and investigate their long-term evolution. We present unpublished CO<sub>2</sub> data from multiple ice cores, including Talos Dome and EPICA Dome C, and discuss possible offset producing mechanisms. We speculate that Antarctic ice cores are also subject to slowly progressing <em>in-situ</em> production of CO<sub>2</sub> over many millennia, similar to Greenlandic ice cores, however to a much smaller extent and limited to about 10 ppm. We further note a tendency for higher offsets in the case of high accumulation sites. Despite all possible mechanisms that have the potential to alter CO<sub>2</sub> concentrations within the ice archive, we highlight that the overall integrity of the ice core-based CO<sub>2</sub> reconstruction is not in question, as all records generally share the same common signal. However, the absolute CO<sub>2</sub> levels should be interpreted with care and in light of such potential offsets.</p>


2020 ◽  
Vol 17 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Georgii A. Alexandrov ◽  
Victor A. Brovkin ◽  
Thomas Kleinen ◽  
Zicheng Yu

Abstract. Northern peatlands have been a persistent natural carbon sink since the Last Glacial Maximum. The continued growth and expansion of these carbon-rich ecosystems could offset a large portion of anthropogenic carbon emissions before the end of the present interglacial period. Here we used an impeded drainage model and gridded data on the depth to bedrock and the fraction of histosol-type soils to evaluate the limits to the growth of northern peatland carbon stocks. Our results show that the potential carbon stock in northern peatlands could reach a total of 875±125 Pg C before the end of the present interglacial, which could, as a result, remove 330±200 Pg C of carbon from the atmosphere. We argue that northern peatlands, together with the oceans, will potentially play an important role in reducing the atmospheric carbon dioxide concentration over the next 5000 years.


2020 ◽  
Author(s):  
Zicheng Yu ◽  
Fortunat Joos ◽  
Thomas Bauska ◽  
Benjamin Stocker ◽  
Hubertus Fischer ◽  
...  

<p>Northern peatlands store large amounts of carbon (C) and have played an important role in the global carbon cycle since the Last Glacial Maximum. Most northern peatlands have established since the end of the deglaciation and accumulated C over the Holocene, leading to a total present-day stock of 500 ± 100 GtC. This is a consolidated estimate, emerging from a diversity of methods using observational data. Recently, Nichols and Peteet (2019 <em>Nature Geoscience</em> <strong>12</strong>: 917-921) presented an estimate of the northern peat C stock of 1055 GtC—exceeding previous estimates by a factor of two. Here, we will review various approaches and estimates of northern peatlands C storage in the literature and consider peat C storage in the context of the Holocene global C budget. We argue that the estimate by Nichols and Peteet is an overestimate, caused by systematic bias introduced by their inclusion of data that are representative for the major peatland regions and of records that lack direct measurements of C density. In particular, some “peatland” sites and data that were included in their synthesis were likely from lacustrine sediments prior to the onset of peat deposits. Furthermore, we argue that their estimate cannot be reconciled within the constraints offered by ice-core and marine records of stable C isotopes and estimated contributions from other processes that affected the terrestrial C storage during the Holocene.</p>


Sign in / Sign up

Export Citation Format

Share Document