scholarly journals Impact of solar vs. volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

2013 ◽  
Vol 9 (6) ◽  
pp. 6179-6220 ◽  
Author(s):  
J. G. Anet ◽  
S. Muthers ◽  
E. V. Rozanov ◽  
C. C. Raible ◽  
A. Stenke ◽  
...  

Abstract. The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles vs. volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, 1780–1840 AD). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ < 250 nm, (ii) irradiance at wavelengths λ > 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate-model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decrease global mean temperature by up to 0.5 K for 2–3 yr after the eruption. However, while the volcanic effect is clearly discernible in the southern hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree-ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ < 250 nm and in energetic particle spectra have only insignificant impact on the climate during the Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ < 250 nm) relative to bottom-up processes (from λ > 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease of the ocean heat content (OHC) between the 0 and 300 m of depth, whereas the changes in irradiance at λ < 250 nm or in energetic particle have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8–15 yr after volcanic eruption, while the solar signal and the different volcanic eruptions dominate the OHC changes in the deeper ocean and prevent its recovery during the DM. Finally, the simulations suggest that the volcanic eruptions during the DM had a significant impact on the precipitation patterns caused by a widening of the Hadley cell and a shift of the intertropical convergence zone.

2014 ◽  
Vol 10 (3) ◽  
pp. 921-938 ◽  
Author(s):  
J. G. Anet ◽  
S. Muthers ◽  
E. V. Rozanov ◽  
C. C. Raible ◽  
A. Stenke ◽  
...  

Abstract. The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780–1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ < 250 nm, (ii) irradiance at wavelengths λ > 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere–ocean chemistry–climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2–3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ < 250 nm and in energetic particle spectra have only an insignificant impact on the climate during the Dalton Minimum. This downscales the importance of top–down processes (stemming from changes at λ < 250 nm) relative to bottom–up processes (from λ > 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8–15 years after volcanic eruption, while the solar signal and the different volcanic eruptions dominate the OHC changes in the deeper ocean and prevent its recovery during the DM. Finally, the simulations suggest that the volcanic eruptions during the DM had a significant impact on the precipitation patterns caused by a widening of the Hadley cell and a shift in the intertropical convergence zone.


2009 ◽  
Vol 22 (23) ◽  
pp. 6168-6180 ◽  
Author(s):  
A. G. Marshall ◽  
A. A. Scaife ◽  
S. Ineson

Abstract The impact of explosive volcanic eruptions on the atmospheric circulation at high northern latitudes is assessed in two versions of the Met Office Hadley Centre’s atmospheric climate model. The standard version of the model extends to an altitude of around 40 km, while the extended version has enhanced stratospheric resolution and reaches 85-km altitude. Seasonal hindcasts initialized on 1 December produce a strengthening of the winter polar vortex and anomalous warming over northern Europe characteristic of the positive phase of the Arctic Oscillation (AO) when forced with volcanic aerosol following the 1963 Mount Agung, 1982 El Chichón, and 1991 Mount Pinatubo eruptions, as is observed. The AO signal in the extended model is of comparable strength to that in the standard model, showing that there is little impact from both increasing the vertical resolution in the stratosphere and extending the model domain to near the mesopause. The presence of this signal in the models, however, is likely due to the persistence of the observed signal from the initial conditions, because a similar set of experiments initiated with the same conditions, but with no volcanic aerosol forcing, exhibits a similar response as the forced runs. This suggests that the model has limited fidelity in capturing the response to volcanic aerosols on its own, consistent with previous studies on the impact of volcanic forcing in long climate simulations, but does support the premise that seasonal winter forecasts are substantially improved with the inclusion of stratospheric information.


2018 ◽  
Vol 31 (14) ◽  
pp. 5749-5764 ◽  
Author(s):  
Aaron F. Z. Levine ◽  
Dargan M. W. Frierson ◽  
Michael J. McPhaden

The Atlantic multidecadal oscillation (AMO) has been shown to play a major role in the multidecadal variability of the Northern Hemisphere, impacting temperature and precipitation, including intertropical convergence zone (ITCZ)-driven precipitation across Africa and South America. Studies into the location of the intertropical convergence zone have suggested that it resides in the warmer hemisphere, with the poleward branch of the Hadley cell acting to transport energy from the warmer hemisphere to the cooler one. Given the impact of the Atlantic multidecadal oscillation on Northern Hemisphere temperatures, we expect the Atlantic multidecadal oscillation to have an impact on the location of the intertropical convergence zone. We find that the positive phase of the Atlantic multidecadal oscillation warms the Northern Hemisphere, resulting in a northward shift of the intertropical convergence zone, which is evident in the Pacific climate proxy record. Using a coupled climate model, we further find that the shift in the intertropical convergence zone is consistent with the surface energy imbalance generated by the Atlantic multidecadal oscillation. In this model, the Pacific changes are driven in large part by the warming of the tropical Atlantic and not the extratropical Atlantic.


2015 ◽  
Vol 15 (10) ◽  
pp. 14275-14314 ◽  
Author(s):  
S. Muthers ◽  
F. Arfeuille ◽  
C. C. Raible ◽  
E. Rozanov

Abstract. After strong volcanic eruptions stratospheric ozone changes are modulated by heterogeneous chemical reactions (HET) and dynamical perturbations related to the radiative heating in the lower stratosphere (RAD). Here, we assess the relative importance of both processes as well as the effect of the resulting ozone changes on the dynamics using ensemble simulations with the atmosphere–ocean–chemistry–climate model (AOCCM) SOCOL-MPIOM forced by eruptions with different strength. The simulations are performed under present day and preindustrial conditions to investigate changes in the response behaviour. The results show that the HET effect is only relevant under present day conditions and causes a pronounced global reduction of column ozone. These ozone changes further lead to a slight weakening of the Northern Hemisphere (NH) polar vortex during mid-winter. Independent from the climate state the RAD mechanism changes the column ozone pattern with negative anomalies in the tropics and positive anomalies in the mid-latitudes. The influence of the climate state on the RAD mechanism significantly differs in the polar latitudes, where an amplified ozone depletion during the winter months is simulated under present day conditions. This is in contrast to the preindustrial state showing a positive column ozone response also in the polar area. The dynamical response of the stratosphere is clearly dominated by the RAD mechanism showing an intensification of the NH polar vortex in winter. Still under present day conditions ozone changes due to the RAD mechanism slightly reduce the response of the polar vortex after the eruption.


2021 ◽  
Author(s):  
Clarissa Kroll ◽  
Hauke Schmidt ◽  
Claudia Timmreck

&lt;p&gt;Large volcanic eruptions affect the distribution of atmospheric water vapour, for instance through cooling of the surface, warming of the lowermost stratosphere, and increasing the upwelling in the tropical tropopause region.&lt;/p&gt;&lt;p&gt;To better understand the volcanic impact on the tropical tropopause region and associated changes in the water vapour distribution in the stratosphere we employ a combination of short term convection-resolving global simulations with ICON and long term low resolution ensemble simulations with the MPI-ESM1.2-LR EVAens&lt;strong&gt;, &lt;/strong&gt;both with prescribed volcanic forcing. With the EVAens a long term statistical analysis of the water vapour trends during the build-up and decay of a volcanic aerosol layer is made possible. The impact of the heating in the cold point regions is studied for five different eruption magnitudes. Stratospheric water vapour changes are analyzed in simulations with synthetic and observation based aerosol profiles showing that the distance of the aerosol profile from the cold point region can be more important for the water vapour entry into the stratosphere than the emitted amount of sulfur.&lt;/p&gt;&lt;p&gt;Whereas the EVAens is ideal to investigate the slow ascent of water vapour into the stratosphere the 10 km high resolution simulations with ICON allow insights into the convective changes after volcanic eruptions going beyond the limitations parameterizations usually impose on the model data.&lt;/p&gt;


2021 ◽  
Author(s):  
Matthew Toohey ◽  
Yue Jia ◽  
Susann Tegetmeier

&lt;p&gt;The cumulative radiative impact of major volcanic eruptions depends strongly on the length of time volcanic sulfate aerosol remains in the stratosphere. Observations of aerosol from recent eruptions have been used to suggest that residence time depends on the latitude of the volcanic eruption, with tropical eruptions producing aerosol loading that persists longer than that from extratropical eruptions. However, the limited number of eruptions observed make it difficult to disentangle the roles of latitude and injection height in controlling aerosol lifetime. Here we use satellite observations and model experiments to explore the relationship between eruption latitude, injection height and resulting residence time of stratospheric aerosol. We find that contrary to earlier interpretations of observations, the residence time of aerosol from major tropical eruptions like Pinatubo (1991) is on the order of 24 months. Model results suggest that the residence time is greatly sensitive to the height of the sulfur injection, especially within the lowest few kilometers of the stratosphere. As injection heights and latitudes are unknown for the majority of eruptions over the common era, we estimate the impact of this uncertainty on volcanic aerosol forcing reconstructions.&amp;#160;&lt;/p&gt;


2016 ◽  
Vol 121 (10) ◽  
pp. 5281-5297 ◽  
Author(s):  
Matthias Bittner ◽  
Claudia Timmreck ◽  
Hauke Schmidt ◽  
Matthew Toohey ◽  
Kirstin Krüger

Sign in / Sign up

Export Citation Format

Share Document