The IGFS gravity field observations and products contributions to GGOS infrastructure

Author(s):  
Georgios S. Vergos ◽  
Riccardo Barzaghi ◽  
Sylvaint Bovalot ◽  
Elmas Sinem Ince ◽  
Adrian Jäggi ◽  
...  

<p>Through its structure the International Gravity Field Service (IGFS) promotes the interaction, cooperation and synergy between the Gravity Services, namely the Bureau Gravimétrique International (BGI), the International Service for the Geoid (ISG), the International Geodynamics and Earth Tides Service (IGETS), the International Center for Global Earth Models (ICGEM), the International Combination Service for Time-variable Gravity Fields (COST-G) and the International Digital Elevation Model Service (IDEMS).</p><p>Furthermore, via its Central Bureau hosted at the Aristotle University of Thessaloniki (Greece), IGFS provides a link to the Global Geodetic Observing System (GGOS) Bureaus in order to communicate their requirements and recommendations to the IGFS-Centers. Moreover, IGFS provides a coordination host for the utilization of gravity-field related products and services towards their inclusion within a GGOS consistent frame meeting the necessary precision and accuracy requirements.</p><p>In this work, an outline is given on the recent activities of IGFS, namely those related to the contributions to the implementation of: the International Height Reference System/Frame; the Global Geodetic Reference System/Frame; the new Global Absolute Gravity Reference System/Frame and rhe combination of temporal monthly global gravity field models. Particularly, the impact that these activities have and will have in improving the estimation of the Earth’s gravity field, either at global and local scale, is highlighted also in the framework of GGOS.</p>

2019 ◽  
Vol 8 (1) ◽  
pp. 30 ◽  
Author(s):  
Ying Zhu ◽  
Xuejun Liu ◽  
Jing Zhao ◽  
Jianjun Cao ◽  
Xiaolei Wang ◽  
...  

Topographic factors such as slope and aspect are essential parameters in depicting the structure and morphology of a terrain surface. We study the effect of the number of points in the neighbourhood of a digital elevation model (DEM) interpolation method on mean slope, mean aspect, and RMSEs of slope and aspect from the interpolated DEM. As the moving least squares (MLS) method can maintain the inherent properties and other characteristics of a surface, this method is chosen for DEM interpolation. Three areas containing different types of topographic features are selected for study. Simulated data from a Gauss surface is also used for comparison. First, the impact of the number of points on the DEM root mean square error (RMSE) is analysed. The DEM RMSE in the three study areas decreases gradually with the number of points in the neighbourhood. In addition, the effect of the number of points in the neighbourhood on mean slope and mean aspect was studied across varying topographies through regression analysis. The two variables respond differently to changes in terrain. However, the RMSEs of the slope and aspect in all study areas are logarithmically related to the number of points in the neighbourhood and the values decrease uniformly as the number of points in the neighbourhood increases. With more points in the neighbourhood, the RMSEs of the slope and aspect are not sensitive to topography differences and the same trends are observed for the three studied quantities. Results for the Gauss surface are similar. Finally, this study analyses the spatial distribution of slope and aspect errors. The slope error is concentrated in ridges, valleys, steep-slope areas, and ditch edges while the aspect error is concentrated in ridges, valleys, and flat regions. With more points in the neighbourhood, the number of grid cells in which the slope error is greater than 15° is gradually reduced. With similar terrain types and data sources, if the calculation efficiency is not a concern, sufficient points in the spatial autocorrelation range should be analysed in the neighbourhood to maximize the accuracy of the slope and aspect. However, selecting between 10 and 12 points in the neighbourhood is economical.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 360 ◽  
Author(s):  
Sansar Raj ◽  
Thimmaiah

Landslides are one of the most damaging geological hazards in mountainous regions such as the Himalayas. The Himalayan region is, tectonically, the most active region in the world that is highly vulnerable to landslides and associated hazards. Landslide susceptibility mapping (LSM) is a useful tool for understanding the probability of the spatial distribution of future landslide regions. In this research, the landslide inventory datasets were collected during the field study of the Kullu valley in July 2018, and 149 landslide locations were collected as global positioning system (GPS) points. The present study evaluates the LSM using three different spatial resolution of the digital elevation model (DEM) derived from three different sources. The data-driven traditional frequency ratio (FR) model was used for this study. The FR model was used for this research to assess the impact of the different spatial resolution of DEMs on the LSM. DEM data was derived from Advanced Land Observing Satellite-1 (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) ALOS-PALSAR for 12.5 m, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global for 30 m, and the Shuttle Radar Topography Mission (SRTM) for 90 m. As an input, we used eight landslide conditioning factors based on the study area and topographic features of the Kullu valley in the Himalayas. The ASTER-Global 30m DEM showed higher accuracy of 0.910 compared to 0.839 for 12.5 m and 0.824 for 90 m DEM resolution. This study shows that that 30 m resolution is better suited for LSM for the Kullu valley region in the Himalayas. The LSM can be used for mitigation and future planning for spatial planners and developmental authorities in the region.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 430
Author(s):  
Michał Sobala ◽  
Urszula Myga-Piątek ◽  
Bartłomiej Szypuła

A viewshed analysis is of great importance in mountainous areas characterized by high landscape values. The aim of this research was to determine the impact of reforestation occurring on former pasturelands on changes in the viewshed, and to quantify changes in the surface of glades. We combine a horizontal and a vertical approach to landscape analysis. The changes in non-forest areas and the viewshed from viewpoints located in glades were calculated using historical cartographic materials and a more recent Digital Elevation Model and Digital Surface Model. An analysis was conducted using a Visibility tool in ArcGIS. The non-forest areas decreased in the period 1848–2015. The viewshed in the majority of viewpoints also decreased in the period 1848–2015. In the majority of cases, the maximal viewsheds were calculated in 1879/1885 and 1933 (43.8% of the analyzed cases), whereas the minimal ones were calculated in 2015 (almost 57.5% of analyzed cases). Changes in the viewshed range from 0.2 to 23.5 km2 with half the cases analyzed being no more than 1.4 km2. The results indicate that forest succession on abandoned glades does not always cause a decline in the viewshed. Deforestation in neighboring areas may be another factor that has an influence on the decline.


2019 ◽  
Vol 69 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Mohammad Nazari-Sharabian ◽  
Masoud Taheriyoun ◽  
Moses Karakouzian

Abstract This study investigates the impact of different digital elevation model (DEM) resolutions on the topological attributes and simulated runoff, as well as the sensitivity of runoff parameters in the Mahabad Dam watershed in Iran. The watershed and streamlines were delineated in ArcGIS, and the hydrologic analyses were performed using the Soil and Water Assessment Tool (SWAT). The sensitivity analysis on runoff parameters was performed, using the Sequential Uncertainties FItting Ver. 2 algorithm, in the SWAT Calibration and Uncertainty Procedures (SWAT-CUP) program. The results indicated that the sensitivity of runoff parameters, watershed surface area, and elevations changed under different DEM resolutions. As the distribution of slopes changed using different DEMs, surface parameters were most affected. Furthermore, higher amounts of runoff were generated when DEMs with finer resolutions were implemented. In comparison with the observed value of 8 m3/s at the watershed outlet, the 12.5 m DEM showed more realistic results (6.77 m3/s). Comparatively, the 12.5 m DEM generated 0.74% and 2.73% more runoff compared with the 30 and 90 m DEMs, respectively. The findings of this study indicate that in order to reduce computation time, researchers may use DEMs with coarser resolutions at the expense of minor decreases in accuracy.


2021 ◽  
Author(s):  
Pawan Thapa ◽  
Narayan Thapa

Abstract Background: The impact of flooding rises due to unplanned settlements, especially in developing and underdeveloped countries. This study tries to address these issues by mapping flood risk places and assessing their impact on population and household.Methods: This study used the dataset available in Google Earth Engine (GEE), Food and Agriculture Organization (FAO), Central Bureau Statistics (CBS), Earth Data for preparing slope, drainage density, digital elevation model, rainfall, land use map, and soil map. These maps create using GEE and QGIS through overlay analysis that has two factors. The one is influence and other slopes, and it has provided high and low value according to its role on flooding.Results: The risk assessment shows around twenty-four percent population is at higher risk, whereas more than three thousand settlements are prone to flooding. It depicts a significant increasing trend of floods in the Morang district.Conclusion: This settlement risk map can help determine the flood safe and very high-risk areas in the Morang district. It will support residential places' planning by the local government, urban planners, and community people to reduce flooding risk.


2021 ◽  
Author(s):  
Pawan Thapa ◽  
Narayan Thapa

Abstract Background: The impact of flooding rises due to unplanned settlements, especially in developing countries. This study tries to address these issues by mapping flood risk places and assessing their impact on population and household.Methods: This study used the dataset available in Google Earth Engine (GEE), Food and Agriculture Organization (FAO), Central Bureau Statistics (CBS), Earth Data for preparing slope, drainage density, digital elevation model, rainfall, land use map, and soil map. These maps create using GEE and QGIS through overlay analysis that has two factors. The one is influence and other slopes, and it has provided high and low value according to its role on flooding.Results: The risk assessment shows around twenty-four percent population is at higher risk, whereas more than three thousand settlements are prone to flooding. It depicts a significant increasing trend of floods in the Morang district.Conclusion: This settlement risk map can help determine the flood safe and very high-risk areas in the Morang district. It will support residential places' planning by the local government, urban planners, and community people to reduce flooding risk.


2020 ◽  
Vol 12 (8) ◽  
pp. 1302 ◽  
Author(s):  
Andam Mustafa ◽  
Michał Szydłowski

Nowadays, geospatial techniques are a popular approach for estimating urban flash floods by considering spatiotemporal changes in urban development. In this study, we investigated the impact of Land Use/Land Cover (LULC) changes on the hydrological response of the Erbil basin in the Kurdistan Region of Iraq (KRI). In the studied area, the LULC changes were calculated for 1984, 1994, 2004, 2014 and 2019 using the Digital Elevation Model (DEM) and satellite images. The analysis of LULC changes showed that the change between 1984 and 2004 was slower than that between 2004 and 2019. The LULC analysis revealed a 444.4% growth in built-up areas, with a 60.4% decrease in agricultural land between 1984 and 2019. The influence of LULC on urban floods caused by different urbanization scenarios was ascertained using the HEC-GeoHMS and HEC-HMS models. Over 35 years, there was a 15% increase in the peak discharge of outflow, from 392.2 m3/s in 1984 to 450 m3/s in 2014, as well as the runoff volume for a precipitation probability distribution of 10%, which increased from 27.4 mm in 1984 to 30.9 mm in 2014. Overall, the probability of flash floods increased in the center of the city due to the large expansion of built-up areas.


2019 ◽  
Vol 79 (1) ◽  
Author(s):  
Bogdan Gadek ◽  
Mirosław Szumny ◽  
Bartłomiej Szypuła

This paper presents the results of a classification of the Tatra lakes based on the duration of their ice cover, altitude, volume, and potential incoming solar radiation (PISR). It is embedded in the context of the impact of current climate change on the mountain environment. A digital elevation model, morphometric data, satellite imagery from the winter seasons of 2015-2017 and the Wrocław taxonomy method were used in the study. It was found that the order of freezing and thawing of the lakes investigated may change from year to year. The relationship between ice cover duration and altitude is clearly weakened by variations in lake volumes, with insolation having a noticeably lesser effect. Determining the duration of ice cover of the lakes over several seasons facilitates identifying the similarities and dissimilarities between them. Five groups of lakes displaying similar characteristics were identified as well as 2 groups of lakes with highly individual characteristics. Based on the data obtained, it can be concluded that the duration of ice cover on the Tatra lakes has been shortening noticeably over the last 100 years. Small high-altitude lakes seem to be most vulnerable to climate change.


2017 ◽  
Vol 23 (4) ◽  
pp. 684-699 ◽  
Author(s):  
Vanessa Cristina Dos Santos ◽  
Mhamad El Hage ◽  
Laurent Polidori ◽  
José Cândido Stevaux

Abstract: Geomorphometry is the science of quantitative description of land surface morphology by the mean of geomorphic indices extracted from Digital Elevation Models (DEMs). The analysis of these indices is the first and most common procedure performed in several geoscience-related subjects. This study aims to assess the impact of mesh size degradation on different local and regional geomorphic indices extracted for GDEM and TOPODATA DEMs. Thus, these DEMs, having a mesh size of 30 m, were subsampled to 60, 120 and 240 m and then geomorphic indices were calculated using the full resolution DEM and the subsampled ones. Depending on their behavior, these indices are then classified into stable and unstable. The results show that the most affected indices are slope and hydrographic indices such as Strahler order, stream sinuosity and fractal dimension and watershed perimeter, whereas elevation remains stable. It also shows that the effect depends on the presence of the canopy and geological structures in the studied area.


2021 ◽  
Author(s):  
Kamil Misztal ◽  
Marcin Siłuch

AbstractThe aim of the study was to analyse lightning discharges over the Lublin region in 2018 using GIS tools. The methods and systems for detection and location of lightning discharges were presented. The impact of terrain coverage, height above sea level, and location of transceiver stations of mobile operators on the occurrence of discharges was shown. The study provides knowledge of theoretically safer areas and those particularly vulnerable to lightning strikes. Additionally, statistics related to lightning discharges over the Lublin region in 2018 were presented. The analyses were carried out on vector data on the atmospheric discharges, vector data from the transceiver stations, vector data containing information on administrative units, and data from the CORINE Land Cover 2018 and on the digital elevation model. The results of the analyses confirmed that areas of airports are particularly exposed to lightning strikes, whereas beaches and sand dunes are the safest areas. It was also found that lightning strikes more often hit coniferous forests than deciduous forests. As indicated by the statistics, May is the month with the largest number of stormy days, while the largest number of lightning strikes is July.


Sign in / Sign up

Export Citation Format

Share Document