scholarly journals Spatial analysis of atmospheric discharges in Lubelszczyzna in 2018

2021 ◽  
Author(s):  
Kamil Misztal ◽  
Marcin Siłuch

AbstractThe aim of the study was to analyse lightning discharges over the Lublin region in 2018 using GIS tools. The methods and systems for detection and location of lightning discharges were presented. The impact of terrain coverage, height above sea level, and location of transceiver stations of mobile operators on the occurrence of discharges was shown. The study provides knowledge of theoretically safer areas and those particularly vulnerable to lightning strikes. Additionally, statistics related to lightning discharges over the Lublin region in 2018 were presented. The analyses were carried out on vector data on the atmospheric discharges, vector data from the transceiver stations, vector data containing information on administrative units, and data from the CORINE Land Cover 2018 and on the digital elevation model. The results of the analyses confirmed that areas of airports are particularly exposed to lightning strikes, whereas beaches and sand dunes are the safest areas. It was also found that lightning strikes more often hit coniferous forests than deciduous forests. As indicated by the statistics, May is the month with the largest number of stormy days, while the largest number of lightning strikes is July.

Author(s):  
Ivan Kruhlov

Boundaries of 43 administrative units (raions and oblast towns) were digitized and manually rectified using official schemes and satellite images. SRTM digital elevation data were used to calculate mean relative elevation and its standard deviation for each unit, as well as to delineate altitudinal bioclimatic belts and their portions within the units. These parameters were used to classify the units via agglomerative cluster analysis into nine environmental classes. Key words: cluster analysis, digital elevation model, geoecosystem, geo-spatial analysis.


2019 ◽  
Vol 8 (1) ◽  
pp. 30 ◽  
Author(s):  
Ying Zhu ◽  
Xuejun Liu ◽  
Jing Zhao ◽  
Jianjun Cao ◽  
Xiaolei Wang ◽  
...  

Topographic factors such as slope and aspect are essential parameters in depicting the structure and morphology of a terrain surface. We study the effect of the number of points in the neighbourhood of a digital elevation model (DEM) interpolation method on mean slope, mean aspect, and RMSEs of slope and aspect from the interpolated DEM. As the moving least squares (MLS) method can maintain the inherent properties and other characteristics of a surface, this method is chosen for DEM interpolation. Three areas containing different types of topographic features are selected for study. Simulated data from a Gauss surface is also used for comparison. First, the impact of the number of points on the DEM root mean square error (RMSE) is analysed. The DEM RMSE in the three study areas decreases gradually with the number of points in the neighbourhood. In addition, the effect of the number of points in the neighbourhood on mean slope and mean aspect was studied across varying topographies through regression analysis. The two variables respond differently to changes in terrain. However, the RMSEs of the slope and aspect in all study areas are logarithmically related to the number of points in the neighbourhood and the values decrease uniformly as the number of points in the neighbourhood increases. With more points in the neighbourhood, the RMSEs of the slope and aspect are not sensitive to topography differences and the same trends are observed for the three studied quantities. Results for the Gauss surface are similar. Finally, this study analyses the spatial distribution of slope and aspect errors. The slope error is concentrated in ridges, valleys, steep-slope areas, and ditch edges while the aspect error is concentrated in ridges, valleys, and flat regions. With more points in the neighbourhood, the number of grid cells in which the slope error is greater than 15° is gradually reduced. With similar terrain types and data sources, if the calculation efficiency is not a concern, sufficient points in the spatial autocorrelation range should be analysed in the neighbourhood to maximize the accuracy of the slope and aspect. However, selecting between 10 and 12 points in the neighbourhood is economical.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 360 ◽  
Author(s):  
Sansar Raj ◽  
Thimmaiah

Landslides are one of the most damaging geological hazards in mountainous regions such as the Himalayas. The Himalayan region is, tectonically, the most active region in the world that is highly vulnerable to landslides and associated hazards. Landslide susceptibility mapping (LSM) is a useful tool for understanding the probability of the spatial distribution of future landslide regions. In this research, the landslide inventory datasets were collected during the field study of the Kullu valley in July 2018, and 149 landslide locations were collected as global positioning system (GPS) points. The present study evaluates the LSM using three different spatial resolution of the digital elevation model (DEM) derived from three different sources. The data-driven traditional frequency ratio (FR) model was used for this study. The FR model was used for this research to assess the impact of the different spatial resolution of DEMs on the LSM. DEM data was derived from Advanced Land Observing Satellite-1 (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) ALOS-PALSAR for 12.5 m, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global for 30 m, and the Shuttle Radar Topography Mission (SRTM) for 90 m. As an input, we used eight landslide conditioning factors based on the study area and topographic features of the Kullu valley in the Himalayas. The ASTER-Global 30m DEM showed higher accuracy of 0.910 compared to 0.839 for 12.5 m and 0.824 for 90 m DEM resolution. This study shows that that 30 m resolution is better suited for LSM for the Kullu valley region in the Himalayas. The LSM can be used for mitigation and future planning for spatial planners and developmental authorities in the region.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 430
Author(s):  
Michał Sobala ◽  
Urszula Myga-Piątek ◽  
Bartłomiej Szypuła

A viewshed analysis is of great importance in mountainous areas characterized by high landscape values. The aim of this research was to determine the impact of reforestation occurring on former pasturelands on changes in the viewshed, and to quantify changes in the surface of glades. We combine a horizontal and a vertical approach to landscape analysis. The changes in non-forest areas and the viewshed from viewpoints located in glades were calculated using historical cartographic materials and a more recent Digital Elevation Model and Digital Surface Model. An analysis was conducted using a Visibility tool in ArcGIS. The non-forest areas decreased in the period 1848–2015. The viewshed in the majority of viewpoints also decreased in the period 1848–2015. In the majority of cases, the maximal viewsheds were calculated in 1879/1885 and 1933 (43.8% of the analyzed cases), whereas the minimal ones were calculated in 2015 (almost 57.5% of analyzed cases). Changes in the viewshed range from 0.2 to 23.5 km2 with half the cases analyzed being no more than 1.4 km2. The results indicate that forest succession on abandoned glades does not always cause a decline in the viewshed. Deforestation in neighboring areas may be another factor that has an influence on the decline.


2019 ◽  
Vol 69 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Mohammad Nazari-Sharabian ◽  
Masoud Taheriyoun ◽  
Moses Karakouzian

Abstract This study investigates the impact of different digital elevation model (DEM) resolutions on the topological attributes and simulated runoff, as well as the sensitivity of runoff parameters in the Mahabad Dam watershed in Iran. The watershed and streamlines were delineated in ArcGIS, and the hydrologic analyses were performed using the Soil and Water Assessment Tool (SWAT). The sensitivity analysis on runoff parameters was performed, using the Sequential Uncertainties FItting Ver. 2 algorithm, in the SWAT Calibration and Uncertainty Procedures (SWAT-CUP) program. The results indicated that the sensitivity of runoff parameters, watershed surface area, and elevations changed under different DEM resolutions. As the distribution of slopes changed using different DEMs, surface parameters were most affected. Furthermore, higher amounts of runoff were generated when DEMs with finer resolutions were implemented. In comparison with the observed value of 8 m3/s at the watershed outlet, the 12.5 m DEM showed more realistic results (6.77 m3/s). Comparatively, the 12.5 m DEM generated 0.74% and 2.73% more runoff compared with the 30 and 90 m DEMs, respectively. The findings of this study indicate that in order to reduce computation time, researchers may use DEMs with coarser resolutions at the expense of minor decreases in accuracy.


Author(s):  
Aleksander Szmidt

The article presents an example of application of selected GIS methods for showing connections between the course of palaeovalleys and contemporary valleys in Central Poland. The analysed area was shaped in the conditions of environment as early as the Palaeogene and Neogene, but the greatest impact on the present-day landscape came from the morphogenetic processes which operated in the Quaternary.Palaeogeographic studies of the analysed area often point to the possible dependencies between the contemporary landscape and its substrate, particularly as regards the valley system. In order to verify this hypothesis, on the basis of archival cartographic materials and a Digital Elevation Model of the current terrain, a procedure for conducting analyses with the use of commonly available GIS tools was proposed. Results of the conducted analysis allow for stating that the major river valleys of Central Poland in large part correspond to the arrangement of the fossil valley system, and the relationships are most easily noticeable for the largest valleys.


2021 ◽  
Author(s):  
Pawan Thapa ◽  
Narayan Thapa

Abstract Background: The impact of flooding rises due to unplanned settlements, especially in developing and underdeveloped countries. This study tries to address these issues by mapping flood risk places and assessing their impact on population and household.Methods: This study used the dataset available in Google Earth Engine (GEE), Food and Agriculture Organization (FAO), Central Bureau Statistics (CBS), Earth Data for preparing slope, drainage density, digital elevation model, rainfall, land use map, and soil map. These maps create using GEE and QGIS through overlay analysis that has two factors. The one is influence and other slopes, and it has provided high and low value according to its role on flooding.Results: The risk assessment shows around twenty-four percent population is at higher risk, whereas more than three thousand settlements are prone to flooding. It depicts a significant increasing trend of floods in the Morang district.Conclusion: This settlement risk map can help determine the flood safe and very high-risk areas in the Morang district. It will support residential places' planning by the local government, urban planners, and community people to reduce flooding risk.


2021 ◽  
Author(s):  
Pawan Thapa ◽  
Narayan Thapa

Abstract Background: The impact of flooding rises due to unplanned settlements, especially in developing countries. This study tries to address these issues by mapping flood risk places and assessing their impact on population and household.Methods: This study used the dataset available in Google Earth Engine (GEE), Food and Agriculture Organization (FAO), Central Bureau Statistics (CBS), Earth Data for preparing slope, drainage density, digital elevation model, rainfall, land use map, and soil map. These maps create using GEE and QGIS through overlay analysis that has two factors. The one is influence and other slopes, and it has provided high and low value according to its role on flooding.Results: The risk assessment shows around twenty-four percent population is at higher risk, whereas more than three thousand settlements are prone to flooding. It depicts a significant increasing trend of floods in the Morang district.Conclusion: This settlement risk map can help determine the flood safe and very high-risk areas in the Morang district. It will support residential places' planning by the local government, urban planners, and community people to reduce flooding risk.


2013 ◽  
Vol 1 (1) ◽  
pp. 14-21
Author(s):  
Hussein M. Al-Khuzaie ◽  
Qassim J. Salman

"In GIS, it is essential to use the areal and space images as data references for information, but it is necessary to create digital information using software such as SURFER 8 and ARC view. These data can be furnished to create digital contour lines map in a rapid way rather than the conventional methods. In this paper, GIS technique was used for producing 3 dimension contour maps for earth surface. This was called as Digital Elevation Model that can provide a view for spatial coordination for the location of these maps. The area was selected for this study is the sand dunes area at Al.Mamlaha (Samawa city district). The source of space images was Google Earth ."


2020 ◽  
Vol 12 (8) ◽  
pp. 1302 ◽  
Author(s):  
Andam Mustafa ◽  
Michał Szydłowski

Nowadays, geospatial techniques are a popular approach for estimating urban flash floods by considering spatiotemporal changes in urban development. In this study, we investigated the impact of Land Use/Land Cover (LULC) changes on the hydrological response of the Erbil basin in the Kurdistan Region of Iraq (KRI). In the studied area, the LULC changes were calculated for 1984, 1994, 2004, 2014 and 2019 using the Digital Elevation Model (DEM) and satellite images. The analysis of LULC changes showed that the change between 1984 and 2004 was slower than that between 2004 and 2019. The LULC analysis revealed a 444.4% growth in built-up areas, with a 60.4% decrease in agricultural land between 1984 and 2019. The influence of LULC on urban floods caused by different urbanization scenarios was ascertained using the HEC-GeoHMS and HEC-HMS models. Over 35 years, there was a 15% increase in the peak discharge of outflow, from 392.2 m3/s in 1984 to 450 m3/s in 2014, as well as the runoff volume for a precipitation probability distribution of 10%, which increased from 27.4 mm in 1984 to 30.9 mm in 2014. Overall, the probability of flash floods increased in the center of the city due to the large expansion of built-up areas.


Sign in / Sign up

Export Citation Format

Share Document