Underground seasonal storage of gas: testing numerical modelling tools with application to i) a deep aquifer-layer, and ii) salt caverns.

Author(s):  
Francesca Silverii ◽  
Djamil Al-Halbouni ◽  
Magdalena Stefanova Vassileva ◽  
Gudrun Richter ◽  
Rongjiang Wang ◽  
...  

<p>Within the framework of the SECURE project, we test modeling techniques used for natural geothermal and volcanic reservoirs and apply them to anthropic underground gas storage facilities. These systems indeed share similar mechanics and physical properties, however gas reservoirs are often extensively monitored, and better imaged. In order to manage fluctuations between gas supply and demand, natural gas can be temporarily stored in different underground storage facilities, such as depleted gas/oil fields, natural aquifers, and salt cavern formations. When properly monitored during storage and withdrawal (production) of gas, these systems provide a unique opportunity to investigate how reservoirs evolve at different time scales, modify the surrounding stress state, produce deformation coupled with diffusion processes, and possibly induce/trigger earthquakes on nearby faults.</p><p>In the first case study we addressed within the framework of SECURE project, we take advantage of well constrained reservoir geometry and physical parameters, records of gas injection/production rates, pore pressure variations, and a local seismic catalog at a gas reservoir in Spain. We implement a poro-elastic model to simulate pressure temporal variations, estimate related stress-state variations, and study eventual relationship with small recorded seismic events. The model is based the software POEL by Wang et al., (2003), a semi-analytical physics-based numerical scheme which allows the computation of transient and steady-state solutions in response to pore-pressure variations. Being 2D axisymmetric, POEL drastically simplify the geometry of the reservoir, but it is particularly suitable to link observables such as pressure variations within the reservoir with the physical/mechanical processes occurring in the surroundings.</p><p>In the second case study we address the stability condition for salt caverns which has been excavated for salt mining purposes. We make use of 2D discrete-element geomechanical models to compare numerical simulation results with field observations in terms of surface subsidence. With this numerical model we consider different pressure conditions for the fluid (brine) filling the cavity, and return different scenarios for the stability of a salt cavern. Such modeling effort aims at improving our understanding of middle-to-long term stability conditions, for those cavities that have been dismissed after anthropic operations such as salt extraction, but also seasonal gas storage.</p>

2014 ◽  
Vol 1008-1009 ◽  
pp. 346-355
Author(s):  
Qi Lin Feng ◽  
Hao Cai ◽  
Zhi Long Chen ◽  
Dong Jun Guo ◽  
Yin Ma

Natural gas storages in salt caverns are receiving an increasingly important role in energy storage system of many countries. This study focuses on analyzing the consequence of jet fire associated with natural gas storages in salt caverns. A widely used software, ALOHA, was adopted as simulation tool. The reliability of ALOHA was validated by comparing the simulated results with the field data observed in real accidents and the values calculated by a simple model presented in a previous study. The China's first natural gas storage in salt cavern, Jintan natural gas storage, was selected for case study. The case study reveals that the hazard distance of jet fire decreased with the increase of pipeline length, as well as the decrease of pipeline diameter and operating pressure.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2859
Author(s):  
Haitao Li ◽  
Jingen Deng ◽  
Qiqi Wanyan ◽  
Yongcun Feng ◽  
Arnaud Regis Kamgue Lenwoue ◽  
...  

Small-spacing twin-well (SSTW) salt caverns have an extensive application prospect in thin or bedded rock salt formations due to their good performance, while they are rarely used in ultra-deep formations. The target strata depth of Pingdingshan salt mine is over 1700 m, and it is planned to apply an SSTW cavern to construct the underground gas storage (UGS). A 3D geomechanical model considering the viscoelastic plasticity of the rock mass is introduced into Flac3D to numerically study the influence of internal gas pressure, cavern upper shape and well spacing on the stability of an SSTW salt cavern for Pingdingshan UGS. A set of assessment indices is summarized for the stability of gas storage. The results show that the minimum internal gas pressure is no less than 14 MPa, and the cavern should not be operated under constant low gas pressure for a long time. The cavern with an upper height of 70 m is recommended for Pingdingshan gas storage based on the safety evaluation and maximum volume. The well spacing has a limited influence on the stability of the salt cavern in view of the volume shrinkage and safety factor. Among the values of 10 m, 20 m and 30 m, the well spacing of 20 m is recommended for Pingdingshan gas storage. In addition, when the cavern groups are constructed, the pillar width on the short axis should be larger than that on the long axis due to its greater deformation in this direction. This study provides a design reference for the construction of salt cavern gas storage in ultra-deep formations with the technology of SSTW.


2021 ◽  
Author(s):  
Lina Ran ◽  
Shuang Liu ◽  
Qiqi Wanyan ◽  
Erdong Yao ◽  
Song Bai

Abstract Salt cavern gas storage is an important strategic method to shave the fluctuation of supply-demand of natural gas in China. However, due to low grades of salt beds, there remains lots of insoluble sediments accounting for 1/3 up to 2/3 of the storage capacity at the bottom of cavity. The use of chemical agent with the function of swelled-clay-shrinking is an effective method for enlarging actual cavity volume. Clay swelling and physical deposits experiments were conducted to select the suitable chemical shrinking agent and study the relation between salt rock and agent. A device simulating the leaching process of insoluble sediments was developed to evaluate different factors on residue deposits and XRD (X-Ray Diffraction) was used to analyze mineral compositions of various salt caverns. The results showed that the main controlling factor for the volume swelling of the bottom insoluble sediments in the salt cavity is the electrostatic repulsion. These hydrated cuttings carry a negative charge leading to the electrostatic repulsion between each other, which promotes the loose accumulations of these physical deposits. The relation between rock and shrinking agent is clarified and the selected chemical agent has an excellent adaptation in salt cavern gas storages through the tests above. In addition, the result provides an experimental basis for minimizing the volume of the salt carven sediments to store more natural gas.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 402
Author(s):  
Krzysztof Tajduś ◽  
Anton Sroka ◽  
Rafał Misa ◽  
Antoni Tajduś ◽  
Stefan Meyer

The article presents a method of forecasting the deformation of the land surface over large fields of underground gas storage facilities located in salt caverns. The solution allows for taking into account many parameters characterising the operation of underground gas storage facilities, such as cavern processes (leaching, enlargement, operational, etc.), their depth, distribution, diameter, shape, and many others. The advantage of the applied method over other available options is the possibility of using it for large fields of caverns while keeping the calculations simple. The effectiveness of the method has been proven for predicted surface subsidence for the EPE field with 114 underground caverns. The hypothesis was compared with the measurement outcomes.


2019 ◽  
Vol 11 (2) ◽  
pp. 251-262 ◽  
Author(s):  
Tongtao Wang ◽  
Jianjun Li ◽  
Gang Jing ◽  
Qingqing Zhang ◽  
Chunhe Yang ◽  
...  

2020 ◽  
Author(s):  
Guiyun Gao ◽  
Chandong Chang ◽  
Chenghu Wang ◽  
Jin Jia

<p>We conduct geomechanical study for a seismogenic fault in Hutubi underground gas storage site, northwestern China. The Hutubi reservoir has undergone active production from 1990s to 2012, leading to a complete depletion, and then sequential gas injection and extraction from 2013 for the gas storage project. First, we constrain the orientation and magnitudes of the stress state at the reservoir depths (~3.6 km depth) at the time of a complete depletion in 2012, using image-logged wellbore breakouts in a borehole. Then we estimate the variation of the stress state with time as a result of pore pressure change based on a simple assumption of coupling between horizontal stresses and pore pressure. Our results show that the stress state was initially in a reverse faulting regime before production and switched to a strike-slip faulting regime during production. Gas injection from 2013 turned the stress regime again in favor of reverse faulting. We use the estimated variation of the reservoir stress state with time to calculate temporal changes of slip tendency of the major earthquake fault (Hutubi fault) in the reservoir. Slip tendency of the fault decreased continuously with production, and then increased with injection. The first earthquake swarm associated with gas injection occurred ~2 months after the commencement of injection, possibly due to slow pore pressure diffusion. Thereafter, earthquakes were induced whenever gas was injected, while few earthquakes were detected during gas extraction phases. Our preliminary assessment of slip tendency suggests that earthquake swarms are induced during increasing phases of pore pressure when slip tendency reaches a value between 0.4 and 0.5, which can provide information on friction coefficient of the fault.</p><p>Funding information: This work is supported by the National Natural Science Foundation of China (41574088,41704096) </p>


2014 ◽  
Vol 1073-1076 ◽  
pp. 2092-2097 ◽  
Author(s):  
Ke Zhang ◽  
Lin Cao

The underground salt caverns created by solution mining used for storage has great advantages over other storage methods. However, not every underground salt cavern created in China is suitable for CO2 storage owing to different reasons like water resources and the depth of salt caverns. The author searched for the geographic information of salt layers in China first. Secondly , through general analysis like analyzing salt caverns’ location and plate, some salt layers good for CO2 storage are listed. Comparing to a case studying from Australia's Otway Basin, which applies underground gas storage experience to geological carbon dioxide storage, the author analyzed the possibility of CO2 storage in Jingtan,China from different aspects mainly about the leakproofness and salt caverns stability. Some suggestions are given concerning the construction of CO2 storage in underground salt caverns at last.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6197
Author(s):  
Krzysztof Polański

The article presents the results of a numerical simulation of the deformation-stress state in the rock mass around a salt cavern which is a part of a CAES installation (Compressed Air Energy Storage). The model is based on the parameters of the Huntorf power plant installation. The influence of temperature and salt-creep speed on the stability of the storage cavern was determined on the basis of the three different stress criteria and the effort of the rock mass in three points of the cavern at different time intervals. The analysis includes two creep speeds, which represent two different types of salt. The solutions showed that the influence of temperature on the deformation-stress state around the CAES cavern is of importance when considering the stress state at a distance of less than 60 m from the cavern axis (at cavern diameter 30–35 m). With an increase in cavern diameter, it is possible that the impact range will be proportionately larger, but each case requires individual modeling that includes the shape of the cavern and the cavern working cycle.


2021 ◽  
pp. 103649
Author(s):  
Kai Zhao ◽  
Yuanxi Liu ◽  
Yinping Li ◽  
Hongling Ma ◽  
Wei Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document