An integrated geophysical approach for structural behavior characterization of the Gravina bridge (Matera, Southern Italy)

Author(s):  
Vincenzo Serlenga ◽  
Maria Rosaria Gallipoli ◽  
Nicola Tragni ◽  
Rocco Ditommaso ◽  
Tony Alfredo Stabile ◽  
...  

<p>Civil infrastructures (i.e bridges, galleries ...) are crucial parts of the road asset and their possible degradation, with related consequences, may have great social, economical and safety impacts. On these grounds, the periodic monitoring of such infrastructures, from a static and dynamic point of view, is required for identifying possible changes in the structure properties, in order to prevent serious damages and disasters.</p><p>In this study we propose an integrated geophysical approach by using non-invasive and non-destructive seismic and electromagnetic techniques with standard and low-cost sensors. It has been implemented to understand the static and dynamic properties of the Gravina bridge and its interaction with foundation soils. Gravina Bridge is a bow-string bridge located few km far from Matera (Southern Italy) and developing for 144 m along a steel-concrete deck. First, the properties of the foundation soils were studied by carrying out three high-resolution geo-electrical tomographies, one bi-dimensional seismic array and two single-station seismic noise measurements. Then, the structural characteristics of the bridge were inferred through seismic and electromagnetic sensing. The former was performed by means of recordings by accelerometers and velocimeters. The accelerometers were installed in a continuous acquisition mode, along the deck and on the top of the arch. In that way, several local and regional earthquakes were recorded and detected. The velocimeters were deployed along different seismic array configurations for on-demand ambient noise recordings, in normal traffic conditions and during vibration tests. The latter were executed by using vehicles as dynamic sources.</p><p>The electromagnetic sensing was performed by using the Microwave Radar Interferometer: it was placed below the deck to measure the displacements of all the scenario illuminated by the antenna beam providing a continuous mapping of the static and dynamic displacements of the entire target.</p><p>The acquired dataset was analyzed both in frequency and time-frequency domain in order to characterize the stationary and non-stationary response of the monitored bridge in terms of fundamental frequencies of vibration, equivalent viscous damping factors and modal shapes. The consistency between the results retrieved by different geophysical techniques provides therefore an importan hint about the reliability of the described approach.</p>

2021 ◽  
pp. 147592172098754
Author(s):  
Vincenzo Serlenga ◽  
Maria Rosaria Gallipoli ◽  
Rocco Ditommaso ◽  
Carlo Felice Ponzo ◽  
Nicola Tragni ◽  
...  

An integrated geophysical approach using non-invasive, non-destructive, and cost-effective seismic and electromagnetic techniques has been implemented to recognize the static and dynamic properties (i.e. eigenfrequencies, equivalent viscous damping factors, and related modal shapes) of the Gravina Bridge and its interaction with foundation soils. The “Gravina” is a bow-string bridge located on outcropping calcarenites in the city of Matera (Southern Italy) and develops for 144 m along a steel-concrete deck. The foundation soil characteristics have been evaluated by means of three high-resolution geo-electrical tomographies, one Vs velocity profile, and two site amplification functions. The main structural characteristics of the bridge have been estimated through permanent and on-demand monitoring using seismic and electromagnetic sensing. The former consisted of accelerometers and velocimeters installed with different geometrical arrangements for permanent earthquake and on-demand ambient vibration test recordings. The electromagnetic sensing was realized by a microwave radar interferometer placed below the deck to measure the displacements of the whole scenario illuminated by the antenna beam providing a continuous mapping of the static and dynamic displacements of the entire target. Acquired data have been analyzed in both frequency and time-frequency domain with the aim to study the stationary and non-stationary response of the monitored bridge. These experimental campaigns allowed us to assess the robustness of the proposed approach and to set up the zero-time reference point of the bridge dynamic parameters.


Author(s):  
N. Shimizu ◽  
H. Nasuno ◽  
T. Yazaki ◽  
K. Sunakoda

This paper describes a methodology of design and analysis of viscoelastic seismic dampers by means of the time domain finite element analysis. The viscoelastic constitutive relation of material incorporating with the fractional calculus has been derived and the finite element formulation based on the constitutive relation has been developed to analyze the dynamic property of seismic damper. A time domain computer program was developed by using the formulation. Dynamic properties of hysteresis loop, damping capacity, equivalent viscous damping coefficient, and equivalent spring constant are calculated and compared with the experimental results. Remarkable correlation between the FE analysis and the experiment is gained, and consequently the design procedure with the help of the FE analysis has been established.


Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 416
Author(s):  
Enrico Paolucci ◽  
Giuseppe Cavuoto ◽  
Giuseppe Cosentino ◽  
Monia Coltella ◽  
Maurizio Simionato ◽  
...  

A first-order seismic characterization of Northern Apulia (Southern Italy) has been provided by considering geological information and outcomes of a low-cost geophysical survey. In particular, 403 single-station ambient vibration measurements (HVSR techniques) distributed within the main settlements of the area have been considered to extract representative patterns deduced by Principal Component Analysis. The joint interpretation of these pieces of information allows the identification of three main domains (Gargano Promontory, Bradanic Through and Southern Apennines Fold and Thrust Belt), each characterized by specific seismic resonance phenomena. In particular, the Bradanic Through is homogeneously characterized by low frequency (<1 Hz) resonance effects associated with relatively deep (>100 m) seismic impedance, which is contrasting corresponding to the buried Apulian carbonate platform and/or sandy horizons located within the Plio-Pleistocene deposits. In the remaining ones, relatively high frequency (>1 Hz) resonance phenomena are ubiquitous due to the presence of shallower impedance contrasts (<100 m), which do not always correspond to the top of the geological bedrock. These general indications may be useful for a preliminary regional characterization of seismic response in the study area, which can be helpful for an effective planning of more detailed studies targeted to engineering purposes.


Author(s):  
Zahra Zali ◽  
Matthias Ohrnberger ◽  
Frank Scherbaum ◽  
Fabrice Cotton ◽  
Eva P. S. Eibl

Abstract Volcanic tremor signals are usually observed before or during volcanic eruptions and must be monitored to evaluate the volcanic activity. A challenge in studying seismic signals of volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. Separating transient events from volcanic tremors can, therefore, contribute to improving upon our understanding of the underlying physical processes. Exploiting the idea of harmonic–percussive separation in musical signal processing, we develop a method to extract the harmonic volcanic tremor signals and to detect transient events from seismic recordings. Based on the similarity properties of spectrogram frames in the time–frequency domain, we decompose the signal into two separate spectrograms representing repeating (harmonic) and nonrepeating (transient) patterns, which correspond to volcanic tremor signals and earthquake signals, respectively. We reconstruct the harmonic tremor signal in the time domain from the complex spectrogram of the repeating pattern by only considering the phase components for the frequency range in which the tremor amplitude spectrum is significantly contributing to the energy of the signal. The reconstructed signal is, therefore, clean tremor signal without transient events. Furthermore, we derive a characteristic function suitable for the detection of transient events (e.g., earthquakes) by integrating amplitudes of the nonrepeating spectrogram over frequency at each time frame. Considering transient events like earthquakes, 78% of the events are detected for signal-to-noise ratio = 0.1 in our semisynthetic tests. In addition, we compared the number of detected earthquakes using our method for one month of continuous data recorded during the Holuhraun 2014–2015 eruption in Iceland with the bulletin presented in Ágústsdóttir et al. (2019). Our single station event detection algorithm identified 84% of the bulletin events. Moreover, we detected a total of 12,619 events, which is more than twice the number of the bulletin events.


2011 ◽  
Vol 418-420 ◽  
pp. 1988-1991
Author(s):  
Li Juan Zhao ◽  
Xiu Mei Lv ◽  
Wei Tong

This develops the roadheader vibration characteristics test system according to the structural characteristics and working principle of the cantilevered roadheader. Using the piezoelectric acceleration sensor detects vibration signal, and passing by signal processing and A/D conversion, vibration signals are sent to the PC with wireless transmission mode, vibration signals detected by the LabVIEW is realized real-time data acquisition, time-frequency analysis and digital processing. Based on this system testing results can effectively master roadheader operation state, identify the vibration characteristics, look for vibration source and put forward reasonable damping vibration measure, which provide the basis for roadheader in the best running condition. The development of roadheader vibration detection system uses the method that combines theory and simulation experiment , which realizes the real-time detection of roadheader vibration behavior, rational signal analysis of roadheader vibration and accurate processing of data results, it provides an important method to ensure the reliability of roadheader.


2017 ◽  
Vol 21 (10) ◽  
pp. 1421-1436 ◽  
Author(s):  
Viktor Hristovski ◽  
Violeta Mircevska ◽  
Bruno Dujic ◽  
Mihail Garevski

Cross-laminated timber has recently gained great popularity in earthquake-prone areas for construction of residential, administrative, and other types of buildings. At the Laboratory of the Institute of Earthquake Engineering and Engineering Seismology in Skopje, comparative full-scale shaking-table tests of cross-laminated timber panel systems have been carried out as a part of the full research program on the seismic behavior of these types of wooden systems, realized by Institute of Earthquake Engineering and Engineering Seismology, Skopje, and the Faculty of Civil and Geodetic Engineering (UL FCG), University of Ljubljana. Two different specimens built of cross-laminated timber panels have been tested: specimen containing a pair of single-unit principal wall elements (Specimen 1) and specimen containing a pair of two-unit principal wall elements (Specimen 2). In this article, the results from the shaking-table tests obtained for Specimen 2 and numerically verified by using appropriate finite element method–based computational model are discussed. Reference is also made to the comparative analysis of the test results obtained for both specimens. One of the most important aspects of the research has been the estimation of the seismic energy-dissipation ability of Specimen 1 and 2, via calculation of the equivalent viscous damping using the performed experimental tests. It is generally concluded that Specimen 2 exhibits a similar rocking behavior as Specimen 1, with similar energy-dissipation ability. Both specimens have manifested slightly different dynamic properties, mostly because Specimen 2 has been designed with one anchor more compared to Specimen 1. Forced vibration tests have been used for identification of the effective stiffness on the contacts for Specimen 2. This research is expected to be a contribution toward clarification of the behavior and practical design of cross-laminated timber panel systems subjected to earthquake loading.


2019 ◽  
Vol 10 (1) ◽  
pp. 168-173
Author(s):  
I. G. Brodova ◽  
A. N. Petrova ◽  
S. V. Razorenov ◽  
E. V. Shorokhov

2020 ◽  
Author(s):  
Tim Sonneman ◽  
Kristín Vogfjörd ◽  
Christopher Bean ◽  
Benedikt Halldórsson ◽  
Johannes Schweitzer

&lt;p&gt;We present preliminary results and progress updates of ongoing work at the Icelandic Meteorological Office carried out within the EUROVOLC work package on Volcano pre-eruptive unrest detection schemes. Our main goal is improved understanding of volcanic systems and fracture zones in South Iceland. This requires enhanced detection and mapping capabilities of seismic events from volcanoes in the Eastern Volcanic Zone (EVZ) and faults in the South Iceland Seismic Zone (SISZ), including continuous real-time analysis of seismic signals associated with magma movement in volcanoes and activity on faults in South Iceland. The chosen measures to achieve these tasks are the deployment of a seismic array at the intersection between the EVZ and the SISZ, the implementation of appropriate real-time array data processing and the investigation of spatiotemporal seismic source characteristics such as tracking of magma movements and intrusions from deep to shallow levels in the crust to image the volcanoes&amp;#8217; plumbing systems, shallow caldera seismicity, and earthquake rupture propagation and microseismicity on nearby tectonic faults. Through funding from an Icelandic infrastructure grant and cooperation between IMO and DIAS, the HEKSISZ small-aperture seismic array is being installed about 6 km south of Hekla. The array, which will consist of 12 stations (7 broadband seismometers and at least 5 additional Raspberry PI seismometers and some co-located accelerometers), builds upon experience gained from temporary array operations in the FUTUREVOLC project and will be the first permanent seismic array in Iceland. The array is surrounded by four different volcanic systems and a prominent fracture zone, providing an abundance of seismicity for analysis. The detection of volcanic and local earthquake events depends on signal coherency and the algorithms used. The signal coherency is mainly affected by array geometry and the site and noise conditions. To analyze the wavefield we will use algorithms such as beamforming, signal-to-noise triggers, FK analysis, and cross-correlation on both vertical and horizontal channels. The implementation is through free open-source software, based mainly on Python obspy and further extensions. While the array is still in the process of coming online, we use data from its existing central permanent network station, MJO to analyze signals from the volcanoes and faults in preparation for the future array data analysis. Relevant single-station observations are first arrival polarization and search for existence and timing of secondary phases, such as surface and Moho reflections from different distances and depths. These observed peculiarities will guide the focus of the array data analysis, specifically as one of the main interests is the depth determination of magma movements and intrusions below Hekla. The volcanic region may have strong lateral crustal heterogeneities, so if significant azimuthal deviations are estimated from the single-station analysis, correction parameters for the array will need to be constrained as well. To further test how a future array might perform in this location, we invert synthetic sources at various depths and distances and also use observed source arrays to search for additional phases from possible conversions and reflections and measure their phase velocities.&lt;/p&gt;


2011 ◽  
Vol 219-220 ◽  
pp. 243-249
Author(s):  
Bai Sheng Wang ◽  
Lie Sun ◽  
Zhi Wei Chang

Considering that Hilbert-Huang Transformation (HHT) can be used to analyze instantaneous frequency in structural dynamic analysis, this paper proposes the concept of HHT marginal spectrum based time frequency response function. It also defines “central frequency”, which is used to reflect the change of structural dynamic properties during earthquakes, and discloses time-varying development of seismic structural damage. Using a three-story shear frame model, which is subjected to the El Centro seismic wave, the HHT time frequency response analysis of its acceleration response has been made, results show that the adoption of central frequency can successfully indicate the damage inception instant and its development.


Author(s):  
Liuchong Wang ◽  
Wang Ping ◽  
Caiyou Zhao ◽  
Dongya Liu ◽  
Wenhua Ke

Due to the structural characteristics of railway turnouts, as well as their vulnerability to damage and other problems, the environmental vibrations induced by urban rail transit often have a greater effect on the railway turnouts than that on an ordinary line. Therefore, it is necessary to carry out an in-depth study on the characteristics of vibration source on the turnouts. In this paper, a group of representative turnouts is selected for field testing on four typical lines of different operational times in a Chinese city. The profile and rail irregularity of the turnouts are measured to evaluate the service condition of the turnouts and the wheel–rail interaction. The vibration acceleration of the track structure and tunnel wall is measured as the train passes the turnout by setting the measuring points in the two main vibration sources, including the switch and the crossing section. The time–frequency domain analysis method is used to analyze these data. It is found that the source strength of the tunnel wall in the crossing section is much greater than that in the switch section, and that the lateral vibration level is often greater than the vertical vibration level. Unexpectedly, there is a low positive correlation between the vibration level and the train speed, while the healthy state of the turnout rails has a great influence on the vibration level. According to the results of the research, the sources of vibration excitation in the turnouts are complex; therefore, it is necessary to comprehensively evaluate their environmental impact and take corresponding vibration control measures.


Sign in / Sign up

Export Citation Format

Share Document