Geochronologic constraints on the Shuram excursion in Oman

Author(s):  
Marjorie Cantine ◽  
Alan Rooney ◽  
Ulf Linneman ◽  
Mandy Hofmann ◽  
Richard Albert ◽  
...  

<p>            The rise of animals occurred during an interval of Earth history that witnessed highly dynamic atmosphere-ocean redox conditions; regional, transient glaciations; extraordinarily low magnetic field intensities potentially related to inner core formation; and perturbations to the global carbon cycle of a size not seen before or since. The largest of these, the Shuram carbon isotope excursion, has been invoked as a driving mechanism for, or consequence of, various biological and geological events during the Ediacaran Period. However, there are a number of major controversies regarding the Shuram, including its timing. Without age constraints on its onset or duration, it is impossible to confidently connect the Shuram Event with any biological or geological upheavals.</p><p>Here, we apply multiple methods, including Re-Os on black shales and U-Pb LA-ICP-MS dating on carbonates, to well-preserved Ediacaran stratigraphy from Oman, deriving new age controls in previously undated parts of the stratigraphy. Our new data show that paired Re-Os shale and U-Pb carbonate analyses constrain the onset and duration of the Shuram excursion in Oman. The results—which are consistent with recent age constraints on Shuram-bearing stratigraphy from Northwest Canada (Rooney et al. 2019, Goldschmidt)—demonstrate the utility of leveraging multiple geochronological techniques within a single basin to constrain deposition in deep to shallow depositional environments. The results also provide key absolute age constraints on the onset of the Shuram excursion in the stratigraphy where it was first defined, critical for testing global correlation schemes, constructing a temporal framework for the Ediacaran period, and identifying causal mechanisms during this interval of geobiological and geodynamic dynamism.</p><p> </p>

10.5772/34707 ◽  
2012 ◽  
Author(s):  
Ben Fadhel ◽  
Soua Mohamed ◽  
Zouaghi Taher ◽  
Layeb ◽  
Mohsen ◽  
...  

LITOSFERA ◽  
2019 ◽  
pp. 148-161 ◽  
Author(s):  
D. E. Tonkacheev ◽  
D. A. Chareev ◽  
V. D. Abramova ◽  
E. V. Kovalchuk ◽  
I. V. Vikentyev ◽  
...  

Research subject.Sphalerite (ZnS) is a widespread mineral that can be found in various depositional environments. During formation, this mineral can accumulate minor and trace impurities, with gold being one of the most valuable component. The issue of the chemical state of Au in sphalerite has been much discussed recently.Methods.Samples of In-, Fe- and In-Febearing sphalerite with a composition ranging from 0 to 2.5 mol.% In2S3 and 0 – 40 mol.% FeS were synthesized in an Ausaturated system using gas transport and salt flux techniques. The resulting products were subsequently investigated using EPMA and LA-ICP-MS.Results.All the elements under investigation are found to be homogeneously distributed within the sphalerite matrix. After quenching, sphalerite is shown to retain Au. Our data indicates that the observed increase in Au concentration is caused by the presence of In (up to 1.02 wt % Au) and, to a lesser extent, by that of Fe (up to ≈600 ppm Au). These elements substitute Zn in the crystal structure of sphalerite following the scheme Au+ + In3+(Fe3+) ↔ 2Zn2+, which is in good agreement with previous data obtained using the XAS method.Conclusions.A higher sulphur fugacity in the system leads to a more significant accumulation of Au in sphalerite. The concentration of Au in pure sphalerite does not exceed 10 ppm under our experimental conditions and does not depend on the activity of sulphur in the system.


2013 ◽  
Vol 150 (4) ◽  
pp. 728-742 ◽  
Author(s):  
GUILLAUME SUAN ◽  
LOUIS RULLEAU ◽  
EMANUELA MATTIOLI ◽  
BAPTISTE SUCHÉRAS-MARX ◽  
BRUNO ROUSSELLE ◽  
...  

AbstractNew sedimentological, biostratigraphical and geochemical data recording the Toarcian Oceanic Anoxic Event (T-OAE) are reported from a marginal marine succession in southern Beaujolais, France. The serpentinum and bifrons ammonite zones record black shales with high (1–10 wt%) total organic carbon contents (TOC) and dysoxia-tolerant benthic fauna typical of the ‘Schistes Carton’ facies well documented in contemporaneous nearby basins. The base of the serpentinum ammonite zone, however, differs from coeval strata of most adjacent basinal series in that it presents several massive storm beds particularly enriched in juvenile ammonites and the dysoxia-tolerant, miniaturized gastropod Coelodiscus. This storm-dominated interval records a marked negative 5‰ carbonate and organic carbon isotope excursion being time-equivalent with that recording storm- and mass flow-deposits in sections of the Lusitanian Basin, Portugal, pointing to the existence of a major tempestite/turbidite event over tropical areas during the T-OAE. Although several explanations remain possible at present, we favour climatically induced changes in platform morphology and storm activity as the main drivers of these sedimentological features. In addition, we show that recent weathering, most probably due to infiltration of O2-rich meteoric water, resulted in the preferential removal of 12C-enriched organic carbon, dramatic TOC loss and total destruction of the lamination of the black shale sequence over most of the studied exposure. These latter observations imply that extreme caution should be applied when interpreting the palaeoenvironmental significance of sediments lacking TOC enrichment and lamination from outcrops with limited surface exposures.


Geosciences ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 391
Author(s):  
Richter ◽  
Nebel-Jacobsen ◽  
Nebel ◽  
Zack ◽  
Mertz-Kraus ◽  
...  

Monazite is a common accessory phosphate mineral that occurs under a wide range of pressure and temperature conditions in sedimentary, metamorphic and igneous rocks. Monazite contains high amounts of Th and U, rendering single monazite grains suitable for in-situ U-Th/Pb dating using laser ablation inductively-coupled mass spectrometry (LA-ICP-MS). Two key aspects of monazite dating that are critical for accurate age data with maximum precision are (i) optimized instrumental conditions to minimize analytical scatter and (ii) a well characterized reference material to ensure the accuracy of the obtained aged. Here, we analyzed five monazite reference materials (USGS 44069, 94-222, MAdel, Moacir and Thompson Mine Monazite) for their U-Th/Pb ages using LA-ICP-MS technique and applied a variety of laser spot diameters and repetition rates to find the best operational conditions to achieve accurate age data while maintaining maximum precision. We find that a spot diameter of 10 µm and a repetition rate of 10 Hz yield the most precise ages with a deviation of ±2.0% from their respective high-precision U/Pb literature age data. Ages were reproduced in three different LA-ICP-MS laboratories using these parameters. Each reference material was tested for its suitability as a matrix-matched age reference material. For this, a rotating, iterative approach was adopted in which one reference monazite was used as calibration reference material against all others, which were treated as unknowns. The results reveal that USGS 44069, 94-222, Thompson Mine Monazite and MAdel all agree with their respective calculated ages and ID-TIMS reference ages and thus are suggested as suitable calibration reference materials. Moacir, however, appears slightly older than previously suggested (up to 4%), thus, caution is advised here when using Moacir as reference material for U-Th/Pb LA-ICP-MS dating in the absence of further absolute age calibration.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 266
Author(s):  
Krzysztof Szopa ◽  
Anna Sałacińska ◽  
Ashley P. Gumsley ◽  
David Chew ◽  
Petko Petrov ◽  
...  

Southeastern Bulgaria is composed of a variety of rocks from pre-Variscan (ca. 0.3 Ga) to pre-Alpine sensu lato (ca. 0.15 Ga) time. The Sakar Unit in this region comprises a series of granitoids and gneisses formed or metamorphosed during these events. It is cut by a series of post-Variscan hydrothermal veins, yet lacks pervasive Alpine deformation. It thus represents a key unit for detecting potential tectonism associated with the enigmatic Cimmerian Orogenic episode, but limited geochronology has been undertaken on this unit. Here we report age constraints on hydrothermal activity in the Sakar Pluton. The investigated veins contain mainly albite–actinolite–chlorite–apatite–titanite–quartz–tourmaline–epidote and accessory minerals. The most common accessory minerals are rutile and molybdenite. Apatite and titanite from the same vein were dated by U–Pb LA–ICP-MS geochronology. These dates are interpreted as crystallization ages and are 149 ± 7 Ma on apatite and 114 ± 1 Ma on titanite, respectively. These crystallization ages are the first to document two stages of hydrothermal activity during the late Jurassic to early Cretaceous, using U–Pb geochronology, and its association with the Cimmerian orogenesis. The Cimmerian tectono-thermal episode is well-documented further to the east in the Eastern Strandja Massif granitoids. However, these are the first documented ages from the western parts of the Strandja Massif, in the Sakar Unit. These ages also temporally overlap with previously published Ar–Ar and K–Ar cooling ages, and firmly establish that the Cimmerian orogeny in the studied area included both tectonic and hydrothermal activity. Such hydrothermal activity likely accounted for the intense albitization found in the Sakar Unit.


2019 ◽  
Vol 104 (9) ◽  
pp. 1256-1272 ◽  
Author(s):  
Indrani Mukherjee ◽  
Ross R. Large ◽  
Stuart Bull ◽  
Daniel G. Gregory ◽  
Aleksandr S. Stepanov ◽  
...  

Abstract Redox-sensitive trace elements and sulfur isotope compositions obtained via in situ analyses of sedimentary pyrites from marine black shales are used to track atmosphere-ocean redox conditions between ∼1730 and ∼1360 Ma in the McArthur Basin, northern Australia. Three black shale formations within the basin (Wollogorang Formation 1730 ± 3 Ma, Barney Creek Formation 1640 ± 3 Ma, and Upper Velkerri Formation 1361 ± 21 Ma) display systematic stratigraphic variations in pyrite trace-element compositions obtained using LA-ICP-MS. The concentrations of several trace elements and their ratios, such as Se, Zn, Se/Co, Ni/Co, Zn/Co, Mo/Co, Se/Bi, Zn/Bi, Ni/Bi, increase from the stratigraphically lower Wollogorang Formation to the Upper Velkerri Formation. Cobalt, Bi, Mo, Cu, and Tl show a consistent decrease in abundance while Ni, As, and Pb show no obvious trends. We interpret these trace element trends as a response to the gradual increase of oxygen in the atmosphere-ocean system from ∼1730 to 1360 Ma. Elements more mobile during erosion under rising atmospheric oxygen show an increase up stratigraphy (e.g., Zn, Se), whereas elements that are less mobile show a decrease (e.g., Co, Bi). We also propose the increase of elemental ratios (Se/Co, Ni/Co, Zn/Co, Mo/Co, Ni/Bi, and Zn/Bi) up stratigraphy are strong indicators of atmospheric oxygenation. Sulfur isotopic compositions of marine pyrite (δ34Spyrite) from these formations, obtained using SHRIMP-SI, are highly variable, with the Wollogorang Formation exhibiting less variation (δ34S = –29.4 to +9.5‰; mean –5.03‰) in comparison to the Barney Creek (δ34S = –13.8 to +41.8‰; mean +19.88‰) and Velkerri Formations (δ34S = –14.2 to +52.8‰; mean +26.9‰). We propose that the shift in mean δ34S to heavier values up-section corresponds to increasing deep water oxygenation from ∼1730 to 1360 Ma. Incursion of oxygenated waters possibly caused a decrease in the areal extent of anoxic areas, at the same time, creating a possibly efficient reducing system. A stronger reducing system caused the δ34S of the sedimentary pyrites to become progressively heavier. Interestingly, heavy δ34S in pyrites overlaps with the increase in the concentration of certain trace elements (and their ratios) in sedimentary pyrites (Se, Zn, Se/Co, Ni/Co, Zn/Co, Mo/Co, Ni/Bi, and Zn/Bi). This study concludes that there was a gradual increase of atmospheric oxygen accompanied by ocean oxygenation through the first ∼400 million years of the Boring Billion (1800–1400 Ma) in the McArthur Basin.


2017 ◽  
Vol 14 (8) ◽  
pp. 2133-2149 ◽  
Author(s):  
Shuichang Zhang ◽  
Xiaomei Wang ◽  
Huajian Wang ◽  
Emma U. Hammarlund ◽  
Jin Su ◽  
...  

Abstract. We studied sediments from the ca. 1400 million-year-old Xiamaling Formation from the North China block. The upper unit of this formation (unit 1) deposited mostly below storm wave base and contains alternating black and green-gray shales with very distinct geochemical characteristics. The black shales are enriched in redox-sensitive trace metals, have high concentrations of total organic carbon (TOC), high hydrogen index (HI) and iron speciation indicating deposition under anoxic conditions. In contrast, the green-gray shales show no trace metal enrichments, have low TOC, low HI and iron speciation consistent with an oxygenated depositional setting. Altogether, unit 1 displays alternations between oxic and anoxic depositional environments, driving differences in carbon preservation consistent with observations from the modern ocean. We combined our TOC and HI results to calculate the differences in carbon mineralization and carbon preservation by comparing the oxygenated and anoxic depositional environments. Through comparisons of these results with modern sedimentary environments, and by use of a simple diagenetic model, we conclude that the enhanced carbon mineralization under oxygenated conditions in unit 1 of the Xiamaling Formation required a minimum of 4 to 8 % of present-day atmospheric levels (PAL) of oxygen. These oxygen levels are higher than estimates based on chromium isotopes and reinforce the idea that the environment contained enough oxygen for animals long before their evolution.


Sign in / Sign up

Export Citation Format

Share Document