Drought monitoring in the Ebro basin: comparison of Soil Moisture and Vegetation anomalies

Author(s):  
Maria Jose Escorihuela ◽  
Pere Quintana Quintana-Seguí ◽  
Vivien Stefan ◽  
Jaime Gaona

<p>Drought is a major climatic risk resulting from complex interactions between the atmosphere, the continental surface and water resources management. Droughts have large socioeconomic impacts and recent studies show that drought is increasing in frequency and severity due to the changing climate.</p><p>Drought is a complex phenomenon and there is not a common understanding about drought definition. In fact, there is a range of definitions for drought. In increasing order of severity, we can talk about: meteorological drought is associated to a lack of precipitation, agricultural drought, hydrological drought and socio-economic drought is when some supply of some goods and services such as energy, food and drinking water are reduced or threatened by changes in meteorological and hydrological conditions. 
</p><p>A number of different indices have been developed to quantify drought, each with its own strengths and weaknesses. The most commonly used are based on precipitation such as the precipitation standardized precipitation index (SPI; McKee et al., 1993, 1995), on precipitation and temperature like the Palmer drought severity index (PDSI; Palmer 1965), others rely on vegetation status like the crop moisture index (CMI; Palmer, 1968) or the vegetation condition index (VCI; Liu and Kogan, 1996). Drought indices can also be derived from climate prediction models outputs. Drought indices base on remote sensing based have traditionally been limited to vegetation indices, notably due to the difficulty in accurately quantifying precipitation from remote sensing data. The main drawback in assessing drought through vegetation indices is that the drought is monitored when effects are already causing vegetation damage. In order to address drought in their early stages, we need to monitor it from the moment the lack of precipitation occurs.</p><p>Thanks to recent technological advances, L-band (21 cm, 1.4 GHz) radiometers are providing soil moisture fields among other key variables such as sea surface salinity or thin sea ice thickness. Three missions have been launched: the ESA’s SMOS was the first in 2009 followed by Aquarius in 2011 and SMAP in 2015.</p><p>A wealth of applications and science topics have emerged from those missions, many being of operational value (Kerr et al. 2016, Muñoz-Sabater et al. 2016, Mecklenburg et al. 2016). Those applications have been shown to be key to monitor the water and carbon cycles. Over land, soil moisture measurements have enabled to get access to root zone soil moisture, yield forecasts, fire and flood risks, drought monitoring, improvement of rainfall estimates, etc.</p><p>The advent of soil moisture dedicated missions (SMOS, SMAP) paves the way for drought monitoring based on soil moisture data. Initial assessment of a drought index based on SMOS soil moisture data has shown to be able to precede drought indices based on vegetation by 1 month (Albitar et al. 2013).</p><p>In this presentation we will be analysing different drought episodes in the Ebro basin using both soil moisture and vegetation based indices to compare their different performances and test the hypothesis that soil moisture based indices are earlier indicators of drought than vegetation ones.</p>

2012 ◽  
Vol 16 (9) ◽  
pp. 3451-3460 ◽  
Author(s):  
W. T. Crow ◽  
S. V. Kumar ◽  
J. D. Bolten

Abstract. The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI) is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs) based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms) in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms) can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.


2021 ◽  
Author(s):  
Vivien-Georgiana Stefan ◽  
Maria-José Escorihuela ◽  
Pere Quintana-Seguí

&lt;h3&gt;Agriculture is an important factor on water resources, given the constant population growth and the strong relationship between water availability and food production. In this context, root zone soil moisture (RZSM) measurements are used by modern irrigators in order to detect the onset of crop water stress and to trigger irrigations. Unfortunately, in situ RZSM measurements are costly; combined with the fact they are available only over small areas and that they might not be representative at the field scale, remote sensing is a cost-effective approach for mapping and monitoring extended areas. A recursive formulation of an exponential filter was used in order to derive 1 km resolution RZSM estimates from SMAP (Soil Moisture Active Passive) surface soil moisture (SSM) over the Ebro basin. The SMAP SSM was disaggregated to a 1 km resolution by using the DISPATCH (DISaggregation based on a Physical And Theoretical scale CHange) algorithm. The pseudodiffusivity parameter of the exponential filter was calibrated per land cover type, by using ISBA-DIF (Interaction Soil Biosphere Atmosphere) surface and root zone soil moisture data as an intermediary step. The daily 1 km RZSM estimates were then used to derive 1 km drought indices such as soil moisture anomalies and soil moisture deficit indices (SMDI), on a weekly time-scale, covering the entire 2020 year. Results show that both drought indices are able to capture rainfall and drying events, with the weekly anomaly being more responsive to sudden events such as heavy rainfalls, while the SMDI is slower to react do the inherent inertia it has. Moreover, a quantitative comparison with drought indices derived from a model-based RZSM estimates has also been performed, with results showing a strong correspondence between the different indices. For comparison purposes, the weekly soil moisture anomalies and SMDI derived using 1 km SMAP-derived SSM were also estimated. The analysis shows that the anomalies and SMDI based on the RZSM are more representative of the hydric stress level of the plants, given that the RZSM is better suited than the SSM to describe the moisture conditions at the deeper layers, which are the ones used by plants during growth and development.&lt;/h3&gt;&lt;h3&gt;The study provides an insight into obtaining robust, high-resolution remote-sensing derived drought indices based on remote-sensing derived RZSM estimates. The 1 km resolution proves an improvement from other currently available drought indices, such as the European Drought Observatory&amp;#8217;s 5 km resolution drought index, which is not able to capture as well the spatial variability present within heterogeneous areas. Moreover, the SSM-derived drought indices are currently used in a drought observatory project, covering a region in the Tarragona province of Catalonia, Spain. The project aims at offering irrigation recommendations to water agencies, and the introduction of RZSM-derived drought indices will further improve such advice.&lt;/h3&gt;


2015 ◽  
Vol 16 (3) ◽  
pp. 1397-1408 ◽  
Author(s):  
Hongshuo Wang ◽  
Jeffrey C. Rogers ◽  
Darla K. Munroe

Abstract Soil moisture shortages adversely affecting agriculture are significantly associated with meteorological drought. Because of limited soil moisture observations with which to monitor agricultural drought, characterizing soil moisture using drought indices is of great significance. The relationship between commonly used drought indices and soil moisture is examined here using Chinese surface weather data and calculated station-based drought indices. Outside of northeastern China, surface soil moisture is more affected by drought indices having shorter time scales while deep-layer soil moisture is more related on longer index time scales. Multiscalar drought indices work better than drought indices from two-layer bucket models. The standardized precipitation evapotranspiration index (SPEI) works similarly or better than the standardized precipitation index (SPI) in characterizing soil moisture at different soil layers. In most stations in China, the Z index has a higher correlation with soil moisture at 0–5 cm than the Palmer drought severity index (PDSI), which in turn has a higher correlation with soil moisture at 90–100-cm depth than the Z index. Soil bulk density and soil organic carbon density are the two main soil properties affecting the spatial variations of the soil moisture–drought indices relationship. The study may facilitate agriculture drought monitoring with commonly used drought indices calculated from weather station data.


2017 ◽  
Vol 9 (11) ◽  
pp. 1168 ◽  
Author(s):  
Miriam Pablos ◽  
José Martínez-Fernández ◽  
Nilda Sánchez ◽  
Ángel González-Zamora

2018 ◽  
Vol 10 (8) ◽  
pp. 1265 ◽  
Author(s):  
Nazmus Sazib ◽  
Iliana Mladenova ◽  
John Bolten

Soil moisture is considered to be a key variable to assess crop and drought conditions. However, readily available soil moisture datasets developed for monitoring agricultural drought conditions are uncommon. The aim of this work is to examine two global soil moisture datasets and a set of soil moisture web-based processing tools developed to demonstrate the value of the soil moisture data for drought monitoring and crop forecasting using the Google Earth Engine (GEE). The two global soil moisture datasets discussed in the paper are generated by integrating the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions’ satellite-derived observations into a modified two-layer Palmer model using a one-dimensional (1D) ensemble Kalman filter (EnKF) data assimilation approach. The web-based tools are designed to explore soil moisture variability as a function of land cover change and to easily estimate drought characteristics such as drought duration and intensity using soil moisture anomalies and to intercompare them against alternative drought indicators. To demonstrate the utility of these tools for agricultural drought monitoring, the soil moisture products and vegetation- and precipitation-based products were assessed over drought-prone regions in South Africa and Ethiopia. Overall, the 3-month scale Standardized Precipitation Index (SPI) and Normalized Difference Vegetation Index (NDVI) showed higher agreement with the root zone soil moisture anomalies. Soil moisture anomalies exhibited lower drought duration, but higher intensity compared with SPIs. Inclusion of the global soil moisture data into the GEE data catalog and the development of the web-based tools described in the paper enable a vast diversity of users to quickly and easily assess the impact of drought and improve planning related to drought risk assessment and early warning. The GEE also improves the accessibility and usability of the earth observation data and related tools by making them available to a wide range of researchers and the public. In particular, the cloud-based nature of the GEE is useful for providing access to the soil moisture data and scripts to users in developing countries that lack adequate observational soil moisture data or the necessary computational resources required to develop them.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2777
Author(s):  
Tao Cheng ◽  
Siyang Hong ◽  
Bensheng Huang ◽  
Jing Qiu ◽  
Bikui Zhao ◽  
...  

Drought is the costliest disaster around the world and in China as well. Northeastern China is one of China’s most important major grain producing areas. Frequent droughts have harmed the agriculture of this region and further threatened national food security. Therefore, the timely and effective monitoring of drought is extremely important. In this study, the passive microwave remote sensing soil moisture data, i.e., the SMOS soil moisture (SMOS-SM) product, was compared to several in situ meteorological indices through Pearson correlation analysis to assess the performance of SMOS-SM in monitoring drought in northeastern China. Then, maps based on SMOS-SM and in situ indices were created for July from 2010 to 2015 to identify the spatial pattern of drought distributions. Our results showed that the SMOS-SM product had relatively high correlation with in situ indices, especially SPI and SPEI values of a nine-month scale for the growing season. The drought patterns shown on maps generated from SPI-9, SPEI-9 and sc-PDSI were also successfully captured using the SMOS-SM product. We found that the SMOS-SM product effectively monitored drought patterns in northeastern China, and this capacity would be enhanced when field capacity information became available.


2014 ◽  
Vol 15 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Zengchao Hao ◽  
Amir AghaKouchak

Abstract Accurate and reliable drought monitoring is essential to drought mitigation efforts and reduction of social vulnerability. A variety of indices, such as the standardized precipitation index (SPI), are used for drought monitoring based on different indicator variables. Because of the complexity of drought phenomena in their causation and impact, drought monitoring based on a single variable may be insufficient for detecting drought conditions in a prompt and reliable manner. This study outlines a multivariate, multi-index drought monitoring framework, namely, the multivariate standardized drought index (MSDI), for describing droughts based on the states of precipitation and soil moisture. In this study, the MSDI is evaluated against U.S. Drought Monitor (USDM) data as well as the commonly used standardized indices for drought monitoring, including detecting drought onset, persistence, and spatial extent across the continental United States. The results indicate that MSDI includes attractive properties, such as higher probability of drought detection, compared to individual precipitation and soil moisture–based drought indices. This study shows that the MSDI leads to drought information generally consistent with the USDM and provides additional information and insights into drought monitoring.


2020 ◽  
Vol 20 (2) ◽  
pp. 471-487
Author(s):  
Beatrice Monteleone ◽  
Brunella Bonaccorso ◽  
Mario Martina

Abstract. Since drought is a multifaceted phenomenon, more than one variable should be considered for a proper understanding of such an extreme event in order to implement adequate risk mitigation strategies such as weather or agricultural indices insurance programmes or disaster risk financing tools. This paper proposes a new composite drought index that accounts for both meteorological and agricultural drought conditions by combining in a probabilistic framework two consolidated drought indices: the standardized precipitation index (SPI) and the vegetation health index (VHI). The new index, called the probabilistic precipitation vegetation index (PPVI), is scalable, transferable all over the globe and can be updated in near real time. Furthermore, it is a remote-sensing product, since precipitation is retrieved from satellite data and the VHI is a remote-sensing index. In addition, a set of rules to objectively identify drought events is developed and implemented. Both the index and the set of rules have been applied to Haiti. The performance of the PPVI has been evaluated by means of a receiver operating characteristic curve and compared to that of the SPI and VHI considered separately. The new index outperformed SPI and VHI both in drought identification and characterization, thus revealing potential for an effective implementation within drought early-warning systems.


2009 ◽  
Vol 17 ◽  
pp. 105-110 ◽  
Author(s):  
F. Caparrini ◽  
F. Manzella

Abstract. We present here the first experiments for an integrated system that is under development for drought monitoring and water resources assessment in Tuscany Region in central Italy. The system is based on the cross-evaluation of the Standardized Precipitation Index (SPI), Vegetation Indices from remote sensing (from MODIS and SEVIRI-MSG), and outputs from the distributed hydrological model MOBIDIC, that is used in real-time for water balance evaluation and hydrological forecast in the major basins of Tuscany. Furthermore, a telemetric network of aquifer levels is near completion in the region, and data from nearly 50 stations are already available in real-time. Preliminary estimates of drought indices over Tuscany in the first eight months of 2007 are shown, and pathway for further studies on the correlation between patterns of crop water stress, precipitation deficit and groundwater conditions is discussed.


Author(s):  
Parwati ◽  
Miao Jungang ◽  
Orbita Roswintiarti

In this research, several meteorological and agricultural drought indices based on remote sensing data are built for drought monitoring over paddy area in Indramayu District, West Java, Indonesia. The meteorological drought index of Standardized Precipitation Index (SPI) is developed from monthly Outgoing Long Wave Radiation (OLR) data from 1980 to 2005. The SPI represents the deficient of precipitation. Meanwhile, the agricultural drought of Vegetation Health Index (VHI) was developed from daily Moderate-resolution ImagingSpectroradiometer (MODIS) data during dry season (May-August) 2003-2006. The VHI was designed to monitoring vegetation health, soil moisture, and thermal conditions. The result shows that the agricultural drought occurate in Indramayu District, especially in the northern and southern part during the dry season in 2003 and 2004. It is found that there is a strong correlation between VHI and soil moisture measured in the field (r=0.84). Key words:Agricultural drought, Meteorological drought, Standardized Precipitation Index, Temperature Condition Index, Vegetation Condition Index.


Sign in / Sign up

Export Citation Format

Share Document