Iberian Fire Regimes for Future Climate Scenarios using a Climate Ensemble

Author(s):  
Tomás Calheiros ◽  
Mário Pereira ◽  
João Nunes

<div> <p><strong>Iberia Fire Regimes for Future Climate Scenarios using a Climate Ensemble</strong></p> <p><strong> </strong></p> <p>T. Calheiros<sup>(1)</sup>, M.G. Pereira<sup>(2,3)</sup>, J.P. Nunes<sup>(1)</sup></p> <p><sup>(1)</sup> CE3C – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal</p> <p><sup>(2)</sup>Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal</p> <p><sup>(3)</sup>Instituto Dom Luiz (IDL), Universidade de Lisboa, Lisboa, Portugal</p>   <p> </p> </div><p> </p><p>Wildfires are generating higher concern worldwide, especially in the Mediterranean regions. Fire season severity and total annual burnt area strongly depend on weather conditions and climate variability.</p><p>The first objective of this work was to analyse Fire Weather Indexes (FWI) in the Iberian Peninsula for the present-day conditions and future climate scenarios, using reanalysis data from ERA-Interim (for 1980-2014) and an ensemble of 11 models from EURO-CORDEX, with high spatial (12 km) and daily resolution. FWI were computed for historical (1976 – 2005) and three future periods (2011-2040, 2041 – 2070 and 2071-2100), using maximum temperature, precipitation, relative humidity and wind speed data simulated for two future scenarios (RCP4.5 and RCP8.5). The second objective was to use the Iberian Pyro-Regions and an analysis of the Number of Extreme Days (NED), using previously published methods, to apply on the future scenarios and assess the intra-annual pattern of NED; and, subsequently, to assess if the pyro-regions will change in a future climate, by taking into account the link between monthly burnt area and extreme days found in previous work.</p><p>The results anticipate a progressive growth of the SW pyro-region throughout the NW pyro-region, and a shift of the present-day NW pyro-region to most of the provinces occupying the N pyro-region, with exception of those north of the Cantabrian Mountains, in effect moving the present-day pattern northwards. This is driven by the large increase of the NED in summer months and eventually a decrease in March and April. Projections alto point to FWI values increasing considerably when comparing the historical and the future scenarios, especially in late spring and early autumn. These results anticipate a higher fire weather risk in the future, with a larger and stronger fire season.</p><p> </p><p> </p><p>References:</p><p> </p><p>Calheiros, T., Pereira, M. G and Nunes, J. P. (2020, in press) ‘Recent evolution of spatial and temporal patterns of burnt areas and fire weather risk in the Iberian Peninsula’, Agricultural and Forest Meteorology.</p><p> </p>

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Eulogio Pardo-Igúzquiza

Global warming associated with greenhouse emissions will modify the availability of water resources in the future. Methodologies and tools to assess the impacts of climate change are useful for policy making. In this work, a new tool to generate potential future climate scenarios in a water resources system from historical and regional climate models’ information has been developed. The GROUNDS tool allows generation of the future series of precipitation, temperature (minimum, mean, and maximum), and potential evapotranspiration. It is a valuable tool for assessing the impacts of climate change in hydrological applications since these variables play a significant role in the water cycle, and it can be applicable to any case study. The tool uses different approaches and statistical correction techniques to generate individual local projections and ensembles of them. The non-equifeasible ensembles are created by combining the individual projections whose control or corrected control simulation has a better fit to the historical series in terms of basic and droughts statistics. In this work, the tool is presented, and the methodology implemented is described. It is also applied to a case study to illustrate how the tool works. The tool was previously tested in different typologies of water resources systems that cover different spatial scales (river basin, aquifer, mountain range, and country), obtaining satisfactory results. The local future scenarios can be propagated through appropriate hydrological models to study the impacts on other variables (e.g., aquifer recharge, chloride concentration in coastal aquifers, streamflow, snow cover area, and snow depth). The tool is also useful in quantifying the uncertainties of the future scenarios by combining them with stochastic weather generators.


2019 ◽  
Vol 111 ◽  
pp. 06006 ◽  
Author(s):  
Matteo Bilardo ◽  
Maria Ferrara ◽  
Enrico Fabrizio

In Europe, the second recast of EPBD promotes long-term strategies to accelerate the path to nZEBs, fostering the cost-optimized building design already suggested in the EPBD first recast. Since the nZEB design is a complex optimization problem that is subjected to uncertainty in its boundary conditions (climate, technologies, market, ...), it is necessary to guarantee the resilience of the NZEB optimal design to possible variations of future scenarios, especially as regards the climate change. This work applies the new EdeSSOpt methodology (Energy Demand and Supply Simultaneous Optimization) developed by the Authors aiming at investigating the variation of the cost-optimized multi-family building design in different Italian future climate scenarios, therefore considering parameters related to the building envelope, energy systems and renewable energy sources. The method is implemented into the TRNSYS® (energy model), GenOpt (optimizer) and WeatherShift® (future climate scenario generator) tools. The resulting cost-optimal solutions in future scenarios are related to a lower global cost and a decreased total primary energy consumption. Beyond the future trends of such performance indexes, the fact that most of technical solutions associated with the optimal solutions have not changed with the studied climate scenarios, indicates a certain resilience of the optimal design variables facing climate change.


2011 ◽  
Vol 20 (8) ◽  
pp. 963 ◽  
Author(s):  
Xiaorui Tian ◽  
Douglas J. McRae ◽  
Jizhong Jin ◽  
Lifu Shu ◽  
Fengjun Zhao ◽  
...  

The Canadian Forest Fire Weather Index (FWI) system was evaluated for the Daxing'anling region of northern China for the 1987–2006 fire seasons. The FWI system reflected the regional fire danger and could be effectively used there in wildfire management. The various FWI system components were classified into classes (i.e. low to extreme) for fire conditions found in the region. A total of 81.1% of the fires occurred in the high, very high and extreme fire danger classes, in which 73.9% of the fires occurred in the spring (0.1, 9.5, 33.3 and 33.1% in March, April, May and June). Large wildfires greater than 200 ha in area (16.7% of the total) burnt 99.2% of the total burnt area. Lightning was the main ignition source for 57.1% of the total fires. Result show that forest fires mainly occurred in deciduous coniferous forest (61.3%), grass (23.9%) and deciduous broad leaved forest (8.0%). A bimodal fire season was detected, with peaks in May and October. The components of FWI system were good indicators of fire danger in the Daxing'anling region of China and could be used to build a working fire danger rating system for the region.


2013 ◽  
Vol 10 (5) ◽  
pp. 6807-6845
Author(s):  
M. C. Demirel ◽  
M. J. Booij ◽  
A. Y. Hoekstra

Abstract. The impacts of climate change on the seasonality of low flows are analysed for 134 sub-catchments covering the River Rhine basin upstream of the Dutch–German border. Three seasonality indices for low flows are estimated, namely seasonality ratio (SR), weighted mean occurrence day (WMOD) and weighted persistence (WP). These indices are related to the discharge regime, timing and variability in timing of low flow events respectively. The three indices are estimated from: (1) observed low flows; (2) simulated low flows by the semi distributed HBV model using observed climate; (3) simulated low flows using simulated inputs from seven climate scenarios for the current climate (1964–2007); (4) simulated low flows using simulated inputs from seven climate scenarios for the future climate (2063–2098) including different emission scenarios. These four cases are compared to assess the effects of the hydrological model, forcing by different climate models and different emission scenarios on the three indices. The seven climate scenarios are based on different combinations of four General Circulation Models (GCMs), four Regional Climate Models (RCMs) and three greenhouse gas emission scenarios. Significant differences are found between cases 1 and 2. For instance, the HBV model is prone to overestimate SR and to underestimate WP and simulates very late WMODs compared to the estimated WMODs using observed discharges. Comparing the results of cases 2 and 3, the smallest difference is found in the SR index, whereas large differences are found in the WMOD and WP indices for the current climate. Finally, comparing the results of cases 3 and 4, we found that SR has decreased substantially by 2063–2098 in all seven subbasins of the River Rhine. The lower values of SR for the future climate indicate a shift from winter low flows (SR > 1) to summer low flows (SR < 1) in the two Alpine subbasins. The WMODs of low flows tend to be earlier than for the current climate in all subbasins except for the Middle Rhine and Lower Rhine subbasins. The WP values are slightly larger, showing that the predictability of low flow events increases as the variability in timing decreases for the future climate. From comparison of the uncertainty sources evaluated in this study, it is obvious that the RCM/GCM uncertainty has the largest influence on the variability in timing of low flows for future climate.


2020 ◽  
Author(s):  
Folmer Krikken ◽  
Jonathan Eden ◽  
Igor Drobyshev

&lt;p&gt;Fire is the primary driving factor of the ecosystem dynamics of many forests, directly affecting the global carbon balance and atmospheric concentrations of the trace gases including carbon dioxide. Recent anthropogenic influence has led to an increase in frequency and impact of wild fires. Hence, it is of vital importance to predict forest fire risk at monthly and seasonal time scales in order to mitigate its impacts, including fire driven dynamics of ecosystem and socio-economic services.&lt;/p&gt;&lt;p&gt;Resilience of the ocean&amp;#8211;atmosphere system provides potential for early detection of upcoming fire season intensity. Here, we report on the development of a probabilistic empirical prediction system for forest fire risk on monthly to seasonal timescales across the Northern Hemisphere, using local and large scale climate information as predictors for future fire weather. The fire risk is quantified by the monthly drought code (MDC), which is an established indicator for seasonal fire activity.&lt;/p&gt;&lt;p&gt;The forecasts are disseminated through the KNMI climate explorer, using an interactive online Python application, in order to convey forecast information in a simple and digestible manner. A forecasting page allows for end-users to assess local seasonal fire weather risk, associated forecast skill, and the relation between historical MDC and observed fires. The forecasts are updated monthly throughout the fire season. A research page allows for local and global analysis of the sources of predictability, and characterization of the patterns of spatial and temporal variability of fire weather risk.&lt;/p&gt;


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 802 ◽  
Author(s):  
Xuezheng Zong ◽  
Xiaorui Tian ◽  
Yunhe Yin

This study analyzed fire weather and fire regimes in Central Asia from 2001–2015 and projected the impacts of climate change on fire weather in the 2030s (2021–2050) and 2080s (2071–2099), which would be helpful for improving wildfire management and adapting to future climate change in the region. The study area included five countries: Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and Turkmenistan. The study area could be divided into four subregions based on vegetation type: shrub (R1), grassland (R2), mountain forest (R3), and rare vegetation area (R4). We used the modified Nesterov index (MNI) to indicate the fire weather of the region. The fire season for each vegetation zone was determined with the daily MNI and burned areas. We used the HadGEM2-ES global climate model with four scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) to project the future weather and fire weather of Central Asia. The results showed that the fire season for shrub areas (R1) was from 1 April to 30 November, for grassland (R2) was from 1 March to 30 November, and for mountain forest (R3) was from 1 April to 30 October. The daily burned areas of R1 and R2 mainly occurred in the period from June–August, while that of R3 mainly occurred in the April–June and August–October periods. Compared with the baseline (1971–2000), the mean daily maximum temperature and precipitation, in the fire seasons of study area, will increase by 14%–23% and 7%–15% in the 2030s, and 21%–37% and 11%–21% in the 2080s, respectively. The mean MNI will increase by 33%–68% in the 2030s and 63%–146% in the 2080s. The potential burned areas of will increase by 2%–8% in the 2030s and 3%–13% in the 2080s. Wildfire management needs to improve to adapt to increasing fire danger in the future.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2467
Author(s):  
David Birt ◽  
Danielle Wain ◽  
Emily Slavin ◽  
Jun Zang ◽  
Robert Luckwell ◽  
...  

During summer, reservoir stratification can negatively impact source water quality. Mixing via bubble plumes (i.e., destratification) aims to minimise this. Within Blagdon Lake, a UK drinking water reservoir, a bubble plume system was found to be insufficient for maintaining homogeneity during a 2017 heatwave based on two in situ temperature chains. Air temperature will increase under future climate change which will affect stratification; this raises questions over the future applicability of these plumes. To evaluate bubble-plume performance now and in the future, AEM3D was used to simulate reservoir mixing. Calibration and validation were done on in situ measurements. The model performed well with a root mean squared error of 0.53 °C. Twelve future meteorological scenarios from the UK Climate Projection 2018 were taken and down-scaled to sub-daily values to simulate lake response to future summer periods. The down-scaling methods, based on diurnal patterns, showed mixed results. Future model runs covered five-year intervals from 2030 to 2080. Mixing events, mean water temperatures, and Schmidt stability were evaluated. Eight scenarios showed a significant increase in water temperature, with two of these scenarios showing significant decrease in mixing events. None showed a significant increase in energy requirements. Results suggest that future climate scenarios may not alter the stratification regime; however, the warmer water may favour growth conditions for certain species of cyanobacteria and accelerate sedimentary oxygen consumption. There is some evidence of the lake changing from polymictic to a more monomictic nature. The results demonstrate bubble plumes are unlikely to maintain water column homogeneity under future climates. Modelling artificial mixing systems under future climates is a powerful tool to inform system design and reservoir management including requirements to prevent future source water quality degradation.


2018 ◽  
Author(s):  
Lluís Brotons ◽  
Andrea Duane

Recent studies have applied simple correlative models to project an increase in future burnt area (BA) for the Mediterranean region. In one of these studies led by Marco Turco and co-workers in the journal Nature Communications (doi:10.1038/s41467-018-06358-z), the authors relate BA to regional estimates of cumulative drought surrogates derived from evapotranspiration indices (SPEI) and later, they use this relationship to infer changes derived from future climate data. However, estimates of future fire risk suffer from the critical shortcoming that negative feedbacks of climate changes on vegetation (i.e. climate may actually reduce vegetation growth and eventually decrease fire risk) are not included. To overcome this problem, these authors proposed a way around by using regional variability in the BA drought relationship (what they call nonstationary models) to account for future changes on fire regimes derived from climate effects on vegetation. Their analyses showed that sensitivity of fire activity to dry periods is stronger in cooler/productive sites and therefore, they propose to use this finding as a short cut in their BA projections using climate change scenarios. The main assumption behind this approach is that the BA-SPEI relationships under a given productivity gradient can be used to infer new BA-SPEI relationships arising in the future. While representing a step forward in acknowledging the pitfalls of current projections of BA, this short-cut falls short in allowing to account for the key process behind climate-vegetation-fire feedbacks. We argue that there are a series of mechanisms by which current correlations are not likely to be maintained in the future with major, overall still unknown, consequences on BA projections.


2014 ◽  
Vol 51 (2) ◽  
pp. 244-263 ◽  
Author(s):  
FARZIN SHABANI ◽  
LALIT KUMAR ◽  
SUBHASHNI TAYLOR

SUMMARYOne consequence of climate change is change in the phenology and distribution of plants, including the date palm (Phoenix dactyliferaL.). Date palm, as a crop specifically adapted to arid conditions in desert oases and to very high temperatures, may be dramatically affected by climate changes. Some areas that are climatically suitable for date palm growth at the present time will become climatically unsuitable in the future, while other areas that are unsuitable under current climate will become suitable in the future. This study used CLIMEX to estimate potential date palm distribution under current and future climate scenarios using one emission scenario (A2) with two different global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR). The results of this study indicated that Saudi Arabia, Iraq and Iran are most affected countries as a result of climate change. In Saudi Arabia, 129 million ha (68%) of currently suitable area is projected to become unsuitable by 2100. However, this is based on climate modelling alone. The actual decrease in area may be much smaller when abiotic and other factors are taken into account. On the other hand, 13 million ha (33%) of currently unsuitable area is projected to become suitable by 2100 in Iran. Additionally, by 2050, Israel, Jordan and western Syria will become climatically more suitable. Cold and heat stresses will play a significant role in date palm distribution in the future. These results can inform strategic planning by government and agricultural organizations to identify areas for cultivation of this profitable crop in the future, and to address those areas that will need greater attention because they are becoming marginal regions for date palm cultivation.


Sign in / Sign up

Export Citation Format

Share Document