MUFITS: A Universal Reservoir Simulator for Numerical Modelling, History Matching and Optimization of Multicomponent Flows in Porous Media

Author(s):  
Andrey Afanasyev ◽  
Elena Vedeneeva ◽  
Natalia Gorokhova

<p>The recent development of the academic reservoir simulator MUFITS aims its transformation to a universal software package that allows for (a) numerical modelling of non-isothermal multicomponent flows in porous media under wide range of pressures and temperatures, including under critical thermodynamic conditions, (b) history matching of non-isothermal reservoir models, and (c) optimization of thermohydrodynamic processes in porous media.</p><p>The extended simulator capabilities for modelling of multicomponent flows includes a new fluid properties module for compositional and thermal reservoir simulations using different cubic equations of state (e.g. Peng-Robinson EoS). An extended library of hydrocarbons, carbon dioxide, nitrogen, water, and other components is built into the simulator, and additional components can be characterized and loaded into the library. An arbitrary number of components can be used in particular simulation. In order to simplify the module usage, the corresponding input data are made compatible with the petroleum industry standards. Unlike many other codes, MUFITS allows for compositional modelling of non-isothermal flows of fluids which properties are predicted with a cubic EoS.</p><p>For improved history matching and optimization the simulator is supplied with an external Simulation Control Unit (SCU), which automatically changes certain parameters of the digital reservoir model and reads back the results of the simulations. An external control loop is implemented in SCU. At each iteration of the loop non-isothermal flow in a porous medium is simulated, and the simulation results are used for calculation of the objective function being minimized. In order to accelerate the history matching and optimization, the SCU can simultaneously (in parallel) run several reservoir simulations. The simulator is supplied with the build-in capabilities for the calculation of gravity changes and surface uplift/subsidence which measurements can also be automatically used in history matching.</p><p>We complement the new developments with several application examples related to gas condensate fields exploration, carbon dioxide injection in depleted oil reservoirs and gas storages, and natural flows in deep geothermal systems.</p><p>We acknowledge the funding from Russian Science Foundation under grant # 19-71-10051.</p>

2020 ◽  
Vol 4 (4) ◽  
pp. 1-8
Author(s):  
Fan H

The Open Porous Media (OPM) reservoir simulation toolkit is a free and open-source development in the reservoir simulation world and one that has received very little attention. OPM Flow is a fully-implicit, black-oil simulator capable of running industry-standard simulation models, which encourage open innovation and reproducible research on modeling and simulation of porous media processes. This study validates and assesses the capabilities of OPM Flow comparing with the industry standard ECLIPSE simulator. Several tests were conducted in order to validate the simulator, including a zero- balance test, symmetrical well test, three simulation models based on the SPE Comparative Solution Project, and a real world dataset from the Norne oilfield in Norway. This variety of tests covers a wide range of reservoir types and specific operating conditions which are representative of expected applications of the software. By comparison it is concluded that OPM Flow reservoir simulator can be considered a validated and capable reservoir simulator that is able to compete with Schlumberger ECLIPSE in many cases and shows great potential for future development. In addition, a basic user interface for queuing and running simulations through the OPM Flow simulator was developed using the Python programming language as well as some modifications to the miscible flooding solver.


2021 ◽  
Vol 11 (7) ◽  
pp. 3153
Author(s):  
Saifeddine Benhadhria ◽  
Mohamed Mansouri ◽  
Ameni Benkhlifa ◽  
Imed Gharbi ◽  
Nadhem Jlili

Multirotor drones are widely used currently in several areas of life. Their suitable size and the tasks that they can perform are their main advantages. However, to the best of our knowledge, they must be controlled via remote control to fly from one point to another, and they can only be used for a specific mission (tracking, searching, computing, and so on). In this paper, we intend to present an autonomous UAV based on Raspberry Pi and Android. Android offers a wide range of applications for direct use by the UAV depending on the context of the assigned mission. The applications cover a large number of areas such as object identification, facial recognition, and counting objects such as panels, people, and so on. In addition, the proposed UAV calculates optimal trajectories, provides autonomous navigation without external control, detects obstacles, and ensures live streaming during the mission. Experiments are carried out to test the above-mentioned criteria.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Karolina Kula ◽  
Agnieszka Kącka-Zych ◽  
Agnieszka Łapczuk-Krygier ◽  
Radomir Jasiński

Abstract The large and significant increase in carbon dioxide concentration in the Earth’s atmosphere is a serious problem for humanity. The amount of CO2 is increasing steadily which causes a harmful greenhouse effect that damages the Earth’s climate. Therefore, one of the current trends in modern chemistry and chemical technology are issues related to its utilization. This work includes the analysis of the possibility of chemical consumption of CO2 in Diels-Alder processes under non-catalytic and catalytic conditions after prior activation of the C=O bond. In addition to the obvious benefits associated with CO2 utilization, such processes open up the possibility of universal synthesis of a wide range of internal carboxylates. These studies have been performed in the framework of Molecular Electron Density Theory as a modern view of the chemical reactivity. It has been found, that explored DA reactions catalyzed by Lewis acids with the boron core, proceeds via unique stepwise mechanism with the zwitterionic intermediate. Bonding Evolution Theory (BET) analysis of the molecular mechanism associated with the DA reaction between cyclopentadiene and carbon dioxide indicates that it takes place thorough a two-stage one-step mechanism, which is initialized by formation of C–C single bond. In turn, the DA reaction between cyclopentadiene and carbon dioxide catalysed by BH3 extends in the environment of DCM, indicates that it takes place through a two-step mechanism. First path of catalysed DA reaction is characterized by 10 different phases, while the second by eight topologically different phases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
George Gillard ◽  
Ian M. Griffiths ◽  
Gautham Ragunathan ◽  
Ata Ulhaq ◽  
Callum McEwan ◽  
...  

AbstractCombining external control with long spin lifetime and coherence is a key challenge for solid state spin qubits. Tunnel coupling with electron Fermi reservoir provides robust charge state control in semiconductor quantum dots, but results in undesired relaxation of electron and nuclear spins through mechanisms that lack complete understanding. Here, we unravel the contributions of tunnelling-assisted and phonon-assisted spin relaxation mechanisms by systematically adjusting the tunnelling coupling in a wide range, including the limit of an isolated quantum dot. These experiments reveal fundamental limits and trade-offs of quantum dot spin dynamics: while reduced tunnelling can be used to achieve electron spin qubit lifetimes exceeding 1 s, the optical spin initialisation fidelity is reduced below 80%, limited by Auger recombination. Comprehensive understanding of electron-nuclear spin relaxation attained here provides a roadmap for design of the optimal operating conditions in quantum dot spin qubits.


Sign in / Sign up

Export Citation Format

Share Document