Ductile-brittle shear zone in a listwaenite body, within the Frontal Range Fault of the Oman Mountains (Sultanate of Oman)

Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Paul Mattern

<p>Listwaenite (fully serpentinized and carbonatized/silicified ultramafic rock) is common within the Oman Mountains near Fanja. The Oman Mountains formed during the late Cretaceous obduction of the Semail Ophiolite. Eventually, major exhumation and associated extensional shearing formed the Saih Hatat Dome during the latest Cretaceous to Paleocene. This dome displays rocks of the Arabian platform, framed by the Hawasina Allochthonous and the Semail Ophiolite. Postobductional rapid exhumation/cooling of the Saih Hatat Dome is reflected by a major extensional shear zone at the northern margin of the dome (Frontal Range Fault, FRF; Mattern and Scharf, 2018). Shearing along the FRF with a throw of few to several kilometers, occurred within two intervals. The major first event occurred during the latest Cretaceous to Paleocene while the minor second event lasted probably from the late Eocene to Oligocene (Mattern et al., 2019). Along and within the FRF, major tabular listwaenite bodies occur displaying a lateral extend from few meters to hundreds of meters and a thickness of up to a few to tens of meters. According to Scharf et al. (2020), the listwaenite dates as latest Cretaceous to Paleocene.</p><p>Most of the numerous SiO<sub>2</sub>-rich listwaenite bodies near Fanja preserve a brittle deformation pattern, indicating that the temperature during and after formation was less than 250°C. As an exception, we found one unusually well-developed, intensely foliated and wide strike-slip ductile-brittle shear zone at the surface, exhibiting a width of 5m and a length of a few tens of meters within a large listwaenite body near the community of Sunub. The foliation of the shear zone dips to the SW with about 50-80°. The shear zone intersects at a high angle with the FRF (strike SW-NE) and the listwaenite unit it contains. The shear movement is unrelated to that of the FRF. Approximately 6km WNW of the sheared listwaenite, a mafic dike of Lutetian age (42.7±0.5Ma; Mattern et al., 2019) intruded Cenozoic limestone. Intrusion is associated with the second shearing interval of the FRF. Because listwaenite bodies usually display brittle deformation, we tentatively conclude that the ductile-brittle shear zone formed during the late Eocene because of mafic intrusions. We assume that another mafic body is located near the shear zone and provided the heat for the ductile-brittle deformation conditions.</p><p> </p><p>References:</p><p>Mattern, F., Scharf, A., 2018. Postobductional extension along and within the Frontal Range of the Eastern Oman Mountains. Journal of Asian Earth Sciences 154, 369-385, doi: 10.1016/j.jseaes.2017.12.031.</p><p>Mattern, F., Sudo, M., Callegari, I., Pracejus, B., Bauer, W., Scharf, A., 2019. Late Lutetian <sup>40</sup>Ar/<sup>39</sup>Ar Age Dating of a Mafic Intrusion into the Jafnayn Formation and its Tectonic Implications (Muscat, Oman). AAPG Event, 2<sup>nd</sup> Edition, Structural styles of the Middle East, 9<sup>th</sup>-11<sup>th</sup> December 2019, Muscat, Oman.</p><p>Scharf, A., Mattern, F., Bolhar, R., Bailey, C.M., Ring, U., 2020. U-Pb dating of postobductional carbonate veins in listwaenite of the Oman Mountains near Fanja. International Conference on Ophiolites and the Oceanic Lithosphere: Results of the Oman Drilling Project and Related Research, 12-14<sup>th</sup> January, 2020, Sultan Qaboos University, Muscat, Sultanate of Oman.</p>

2021 ◽  
Author(s):  
Frank Mattern ◽  
Robert Bolhar ◽  
Andreas Scharf ◽  
Katharina Scharf ◽  
Paul Mattern ◽  
...  

<p>The geology of the Oman Mountains was shaped by the SW-directed obduction of allochthonous deep-sea rocks (Hawasina), trench-facies rocks (Haybi) and oceanic lithosphere (Semail Ophiolite) onto Arabian autochthonous shelf carbonates during the Late Cretaceous. Locally, the resulting obduction orogen was overprinted by significant post-obductional extension. NNE-directed extension occurred during at least two episodes which took place from the latest Cretaceous to early Eocene and late Eocene to Oligocene/Miocene, respectively. Moreover, the Oman Mountains, between the eastern Batinah Coastal Plain and the Sur area (Qalhat Fault) display numerous ~N/S-oriented folds and reverse faults. These structures overprinted mid-Eocene to at least Oligocene/Miocene formations (i.e., the Seeb to Barzaman formations).</p><p>Detailed structural/field work and satellite image analyses provide ample evidence that these ~N/S-compressional features are cogenetic with ~WNW to NW-striking sinistral faults. All these post-mid-Eocene structures are part of one major left-lateral WNW- to NW-striking shear zone from the Batinah Coastal Plain in the NW to the Batain area in the SE. Sinistral shearing is localized along the southwestern margin of the Saih Hatat Dome, crosses the Fanja area and continues to the northern part of the Jabal Akhdar Dome (Jabal Nakhl Subdome). The straight southwestern margin of the Saih Hatat Dome may correlate with a Permo-Triassic major extensional fault, active during the Pangea rifting. Shearing also affected rocks northeast of this zone, i.e., within the Salma Plateau and the Rusayl Embayment. Thus, shearing affected an area of 250 km by 40 km in width. We term this shear zone hereafter the “Hajar Shear Zone” (HSZ). The amount of sinistral shearing is unknown due to the absence of markers and wide strain distribution, but is likely to be at the order of a few tens of kilometers.</p><p>The cause for the WNW-directed sinistral shearing is the overall E/W-directed shortening between the Arabian and Indian plates. During shortening, a pre-existing WNW-striking basement fault zone was reactivated, creating the HSZ. A G-Plates reconstruction between the two plates reveals an ~8° counter-clockwise rotation of India (with respect to fixed Arabia) between 32.5 and 20 Ma, resulting in ~150 km E/W-shortening between both plates at the easternmost tip of Arabia. The area northeast of the HSZ underwent most E-W-shortening. The 150 km interplate E/W-shortening is the maximum value for sinistral shearing along the HSZ and other faults. Some of the shortening may have been absorbed offshore Oman across the Owen Basin and/or along the continental/oceanic transitions of both plates.</p>


10.1144/m54.5 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 67-103
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThe tectonic evolution of the Oman Mountains as of the Neoproterozoic begins with a major extensional event, the Neoproterozoic Abu Mahara rifting. It was followed by the compressional Nabitah event, still during the Neoproterozoic, in Oman but possibly not in the study area. During the earliest Cambrian, the Jabal Akhdar area was affected by the Cadomian Orogeny, marked by NE--SW shortening. It is unclear, whether the Saih Hatat area was exposed to the Cadomian deformation, too. Still during the lower Cambrian, the Angudan Orogeny followed, characterized by NW--SE shortening. An episode of rifting affected the Saih Hatat area during the mid-Ordovician. During the mid-Carboniferous, both dome areas were deformed by tilting and large-scale open folding in the course of the ‘Hercynian’ event. As a consequence, a major unconformity formed. As another Late Paleozoic event, the Permian break-up of Pangaea and subsequent formation of the Hawasina ocean basin, are recorded in the Southeastern Oman Mountains. As a result, a passive margin formed which existed until the mid-Cretaceous, characterized by deposition of mostly shelfal carbonates. This interval of general tectonic quiescence was interrupted during the early Jurassic by uplift and tilting of the Arabian Platform. The platform collapsed during the late Cretaceous, related to the arrival of the obducted allochthonous nappes including the Semail Ophiolite, transforming the passive margin to an active margin.The Semail Ophiolite formed most likely above a subduction zone within the Neo-Tethys Ocean during the Cenomanian while parts of the Arabian Plate were subducted to the NE. Formation of oceanic lithosphere and SW-thrusting was broadly coeval, resulting in ophiolite obduction onto the Hawasina Basin. The Semail Ophiolite and the Hawasina rocks combined were thrust further onto the Arabian Plate. Their load created a foreland basin and forebulge within the Arabian Platform. Once the continental lithosphere of the Arabian Platform was forced into the subduction zone, a tear between the dense oceanic lithosphere and the buoyant continental lithosphere developed. This led to rapid uplift and exhumation of subducted continental lithosphere of the Saih Hatat area, while obduction was still going on, causing in multiple and intense folding/thrusting within the eastern Saih Hatat Dome. Exhumation of the Saih Hatat Dome was massive. The emplacement of the ophiolite was completed during the Campanian/Maastrichtian. For completeness, we also present alternative models for the developmental history of the Semail Ophiolite.Immediately after emplacement, the Arabian lithosphere underwent intense top-to-the-NE extensional shearing. Most of the Saih Hatat Dome was exhumed during the latest Cretaceous to Early Eocene, associated with major extensional shearing at its flanks. Further convergence during the late Eocene to Miocene resulted in exhumation of the Jabal Akhdar Dome and some gentle exhumation of the Saih Hatat Dome, shaping the present-day Southeastern Oman Mountains. In the coastal area, east and SE of the Saih Hatat Dome, some late Cretaceous to present-day uplift is evident by, e.g., uplifted marine terraces. The entire Oman Mountains are uplifting today, which is evident by the massive wadi incision into various rock units, including wadi deposits which may form overhangs.


1982 ◽  
Vol 119 (5) ◽  
pp. 497-503 ◽  
Author(s):  
S. J. Lippard ◽  
D. C. Rex

SummaryK–Ar ages of biotites from a variety of alkaline volcanics and minor intrusive rocks in the nothern Oman mountains allochthon give a range of ages from Triassic (230 Ma) to mid Cretaceous (92 Ma) and represent igneous activity on the Oman continental margin throughout the Mesozoic. This was a passive margin destroyed by the emplacement across it of a pile of nappes in the late Cretaceous, including a largely intact thrust sheet of Upper Cretaceous oceanic lithosphere (the Semail ophiolite). Biotite ankaramite dykes, cutting compositionally similar volcanics, in the thrust complex immediately beneath the ophiolite, give Triassic ages and are related to the rifting and break-up of the northeast Arabian margin at the beginning of formation of the Oman Tethys. Mid Cretaceous (Cenomanian–Turonian) ages are mostly recorded from the northern part of the mountains where there are alkaline tuffs in a sedimentary melange. They are approximately the same age as the ophiolite and may be related to tectonic instability of the Oman margin immediately prior to ophiolite emplacement. Alkaline sills, intrusive into a variety of rocks, including Triassic volcanics, give Jurassic and Cretaceous ages and are interpreted as periodic alkaline activity on the Oman margin throughout passive margin development.


2000 ◽  
Vol 137 (1) ◽  
pp. 1-18 ◽  
Author(s):  
ADRIAN IMMENHAUSER ◽  
GUIDO SCHREURS ◽  
EDWIN GNOS ◽  
HEIKO W. OTERDOOM ◽  
BERNHARD HARTMANN

When the highlands of Arabia were still covered with an ice shield in the latest Carboniferous/Early Permian period, separation of Gondwana started. This led to the creation of the Batain basin (part of the early Indian Ocean), off the northeastern margin of Oman. The rifting reactivated an Infra-Cambrian rift shoulder along the northeastern Oman margin and detritus from this high was shed into the interior Oman basin. Whereas carbonate platform deposits became widespread along the margin of the Neo-Tethys (northern rim of Oman), drifting and oceanization of the Batain basin started only in Late Jurassic/Early Cretaceous time. Extensional tectonics was followed in the Late Cretaceous by contraction caused by the northward drift of Greater India and Afro-Arabia. This resulted in the collision of Afro-Arabia with an intra-oceanic trench and obduction of the Semail ophiolite and the Hawasina nappes south to southwestward onto the northern Oman margin ∼80 m.y. ago. During the middle Cretaceous, the oceanic lithosphere (including the future eastern ophiolites of Oman) drifted northwards as part of the Indian plate. At the Cretaceous–Palaeogene transition (∼65 Ma), oblique convergence between Greater India and Afro-Arabia caused fragments of the early Indian Ocean to be thrust onto the Batain basin. Subsequently, the Lower Permian to uppermost Maastrichtian sediments and volcanic rocks of the Batain basin, along with fragments of Indian Ocean floor (eastern ophiolites), were obducted northwestward onto the northeastern margin of Oman. Palaeogene neo-autochtonous sedimentary rocks subsequently covered the nappe pile. Tertiary extensional tectonics related to Red Sea rifting in the Late Eocene was followed by Miocene shortening, associated with the collision of Arabia and Eurasia and the formation of the Oman Mountains.


GeoArabia ◽  
2008 ◽  
Vol 13 (2) ◽  
pp. 91-118 ◽  
Author(s):  
Mohammed Y. Ali ◽  
Manhal Sirat ◽  
James Small

ABSTRACT The area to the southeast of the city of Al Ain, Abu Dhabi, United Arab Emirates, is part of an arcuate sedimentary basin whose trend gradually changes from NNW near Al Ain to NNE at Ras Al Khaimah. The basin is bounded to the east by the generally N-trending Oman Mountains and on the west by an arcuate, overall west-verging fold-thrust front that involves Mesozoic carbonates. The fold-thrust front is part of the overall compressional system of Late Cretaceous age (with Late Tertiary reactivation) associated with obduction and emplacement of the Semail Ophiolite, Haybi, Hawasina and Sumeini sheets onto the continental margin of the Arabian Plate. Near Al Ain, the fold-thrust front is expressed as the remarkable, NNW-trending Jabal Hafit that rises one kilometer above the gravel-filled Al Jaww Plain. Gravity and magnetic investigations were carried-out in the Al Jaww Plain, an area of approximately 550 square km. The interpretation of these new data, including measurements of physical properties of rock samples from the area, were integrated with a new interpretation of an industry seismic reflection profile to provide constraints on the modelling of the subsurface structure and evolution of the sedimentary basin beneath Al Jaww Plain. We recognised four major tectono-stratigraphic units in the seismic profiles: autochthonous shelf carbonates, the Hawasina allochthon, Upper Cretaceous foreland basin sediments (primarily Fiqa Formation), and Tertiary neo-authochthonous units. Along-strike variations in the residual Bouguer gravity field were interpreted as being due to either variations in the thickness, or even total absence, of the Hawasina sheet. Comparison of two E-W gravity profiles, one in the southern part of our study area and the other to the north, suggest that the Hawasina sheet underlies little of the southern area but almost all of the northern area. Magnetic anomalies are weak (< 50 nT) over most of the area but peak (> 300 nT) in the easternmost part of the southern profile, where the high-susceptibility rocks of the Semail Ophiolite are exposed. Thus, we interpret that no continuation of the ophiolite extends westward from this outcrop into the subsurface of the study area. The structural geometries described here have resulted from two major tectonic events. The first, a Late Cretaceous phase, emplaced the obduction-related allochthonous thrust sheets of the Oman Mountains westward onto the Mesozoic carbonate platform. This phase primarily affected the eastern part of the study area and contributed to both the high magnetic (> 300 nT) and residual Bouguer gravity (> 14.0 mGal) anomalies. The second event, a Tertiary deformation phase, affected most parts of the area and produced a series of asymmetrical anticlines and synclines trending in a NNW-SSE direction. This phase contributed to the low residual gravity anomaly (< -9.0 mGal) in the center of the study area. We modelled that area as containing a sequence of post-Eocene carbonate sediments with a minimum thickness of 2.0 km. The Tertiary folding and thrusting formed as a result of a regional compressive deformation, whose principal compressive stress axes were sub-parallel to those of the Late Cretaceous compressional stress regime. The younger event reactivated high-angle reverse faults within the Mesozoic platform succession. Precise timing of the Tertiary deformation is debatable; it is most likely that the rejuvenation of the E-W to ENE-WSW Cretaceous stress regime took place in the Late Eocene-Miocene but gradually shifted to become N-S to NE-SW. This shift could be due to the collision of the Arabian and Eurasian plates and the opening of the Red Sea which started during Late Eocene and continues until the present-day.


GeoArabia ◽  
2007 ◽  
Vol 12 (2) ◽  
pp. 99-130 ◽  
Author(s):  
Michael P. Searle

ABSTRACT The Al Jabal al Akhdar and Saih Hatat culminations in the central Oman Mountains expose the complete mid-Permian to Late Cretaceous (Cenomanian) passive shelf and margin carbonate sequence beneath the allochtonous slope (Sumeini Group), basin (Hawasina complex), distal ocean-trench (Haybi complex) facies rocks, and the Semail ophiolite thrust sheets that were emplaced from NE to SW during the Late Cretaceous. Reconstruction of the pre-thrust sequences shows that time-equivalent rocks occur in successively stacked thrust sheets from shelf to slope to basin. The Al Jabal al Akhdar structure is a 60 km wavelength anticline plunging to the northwest beneath the Hawasina Window and with a fold axis that curves from WNW-ESE (Jabal Shams) to NNE-SSW (Jabal Nakhl). The structure shows little internal deformation except for minor intra-formational thrust duplexing within the Cretaceous shelf stratigraphy along the northern margin. The upper structural boundaries around the flanks of the shelf carbonate culminations have been re-activated as late stage normal faults. The Semail thrust formed a passive roof fault during late-stage culmination of al Al Jabal al Akhdar such that the ophiolite rests directly on Wasia Formation top-shelf with the entire Sumeini, Hawasina and Haybi thrust sheets displaced around the margins. NE-directed backthrusting and intense folding in the northern part of the Hawasina Window affects all allochtonous units and is related to a steep ramp in the Late Cretaceous shelf margin at depth. The Saih Hatat culmination is another 40 km half-wavelength anticline in the central Oman Mountains, but shows extreme deformation in the form of recumbent folds, sheath folds with NNE-trending axes and thrusting along the northern margin. High-pressure carpholite, blueschist and eclogite facies rocks are exposed at successively deeper structural levels, separated by high-strain normal sense shear zones. There is no evidence for a separate ‘North Muscat microplate’ or an intra-continental subduction zone, as previously proposed; all high-pressure units can be restored to show their pre-deformation palaeographic positions along the northern margin of the Arabian Plate. Both Al Jabal al Akhdar and Saih Hatat are Late Cretaceous culminations, folded after obduction of the Hawasina, Haybi and Semail ophiolite thrust sheets from northeast to southwest during the period Turonian to Campanian-Lower Maastrichtian. Maximum compressive stress along the central Oman Mountains was oriented NE-SW, parallel to the ophiolite emplacement direction, but a second compressive stress axis was oriented WNW-ESE, either concurrently or slightly later in time, resulting in a dome and basin structural geometry. The biaxial fracture pattern in the foreland, southwest of the Oman Mountains could be explained as a result of the WNW-directed emplacement of the Masirah ophiolite belt and Batain mélange during the Campanian-early Palaeocene. Both Al Jabal al Akhdar and Saih Hatat were positive topographic features at the end of the Cretaceous with Upper Maastrichtian and Palaeogene sediments onlapping both flanks. In Jabal Abiad, these Palaeogene sediments have been uplifted by at least 2 km since the Late Miocene-Early Oligocene associated with minor NNE-SSW compression. Tertiary shortening, folding and thrusting increases to the north in the Musandam peninsula where the first effects of the Arabian Plate-Eurasian Plate (Zagros belt) continent-continent collision are seen.


2020 ◽  
Author(s):  
Adrian E. Castro ◽  
◽  
Chloe Bonamici ◽  
Christopher G. Daniel ◽  
Danielle Shannon Sulthaus

2002 ◽  
Vol 173 (1) ◽  
pp. 3-15 ◽  
Author(s):  
André Michard ◽  
Ahmed Chalouan ◽  
Hugues Feinberg ◽  
Bruno Goffé ◽  
Raymond Montigny

Abstract The Betic-Rif arcuate mountain belt (southern Spain, northern Morocco) has been interpreted as a symmetrical collisional orogen, partly collapsed through convective removal of its lithospheric mantle root, or else as resulting of the African plate subduction beneath Iberia, with further extension due either to slab break-off or to slab retreat. In both cases, the Betic-Rif orogen would show little continuity with the western Alps. However, it can be recognized in this belt a composite orocline which includes a deformed, exotic terrane, i.e. the Alboran Terrane, thrust through oceanic/transitional crust-floored units onto two distinct plates, i.e. the Iberian and African plates. During the Jurassic-Early Cretaceous, the yet undeformed Alboran Terrane was part of a larger, Alkapeca microcontinent bounded by two arms of the Tethyan-African oceanic domain, alike the Sesia-Margna Austroalpine block further to the northeast. Blueschist- and eclogite-facies metamorphism affected the Alkapeka northern margin and adjacent oceanic crust during the Late Cretaceous-Eocene interval. This testifies the occurrence of a SE-dipping subduction zone which is regarded as the SW projection of the western Alps subduction zone. During the late Eocene-Oligocene, the Alkapeca-Iberia collision triggered back-thrust tectonics, then NW-dipping subduction of the African margin beneath the Alboran Terrane. This Maghrebian-Apenninic subduction resulted in the Mediterranean basin opening, and drifting of the deformed Alkapeca fragments through slab roll back process and back-arc extension, as reported in several publications. In the Gibraltar area, the western tip of the Apenninic-Maghrebian subduction merges with that of the Alpine-Betic subduction zone, and their Neogene roll back resulted in the Alboran Terrane collage astride the Azores-Gibraltar transpressive plate boundary. Therefore, the Betic-Rif belt appears as an asymmetrical, subduction/collision orogen formed through a protracted evolution straightfully related to the Alpine-Apenninic mountain building.


10.1144/m54.6 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThis chapter provides the conclusions/outlines of the tectonics, affecting the Southeastern Oman Mountains, including the Jabal Akhdar and Saih Hatat domes. The main tectonic events include amongst others (1) Neoproterozoic rifting, (2) two distinct early Paleozoic compressive events, (3) large-scale open ‘Hercynian’ folding and formation of a pronounced unconformity during the late Paleozoic, (4) rifting preceding the opening of the Neo-Tethys Ocean during the late Paleozoic, (5) late Cretaceous obduction of the Semail Ophiolite and the response of the Arabian lithosphere as well as (6) post-obductional tectonics. Also of major geological significance are the three major glaciations (Sturtian, Marinoan and Late Paleozoic Gondwana glaciation) which have been recorded in the rocks of northern Oman. Moreover, major lithological, structural and metamorphic differences exist between the Jabal Akhdar and Saih Hatat domes. It appears likely that a major fault, striking parallel to the eastern margin of the Jabal Akhdar Dome, probably originating during Neoproterozoic terrain accretion, acted as a divide between both domes until present. This fault was multiple times reactivated and could explain the differences between the two domes. A catalogue of unanswered questions is included in chronological order to express that many geological aspects need further investigation and future research projects.


2021 ◽  
Author(s):  
Hongyuan Zhang ◽  
Zhibin Lei ◽  
Bo Yang ◽  
Qing Liu ◽  
Haijun Zhang ◽  
...  

<p>A 1:50000 regional survey, covering an area of about 2000 km<sup>2</sup>, was carried out in the Shangrimuce area of Qilian Mountain in Northwest China. The results show that during Caledonian, the northern margin of the Central Qilian block experienced collision with mature island arcs and subsequently northward expansion. In the Shangrimuce study area, five geological units have been identified; they are, form south to north, back-arc basin, early Ordovician island arc, inter arc basin, middle Late Ordovician island arc, and fore-arc and oceanic lithosphere amalgamation zone. </p><p>(1) back-arc basin. In the Yangyuchi- Shule River- Cuorigang- Wawusi area, there may be a back-arc spreading basin, and there should be spreading basins in this area. It is speculated that there was a northward reverse subduction in the late Ordovician, accompanied by a syenite body, a broad spectrum dyke swarms and an accretionary wedge zone in the whole area.</p><p>(2) early Ordovician island arc. In the Shangrimuce-Dander area, the Proterozoic basement granitic gneiss, the early Ordovician island arc block and the high-pressure geological body all occur in the form of thrust horses, forming a double metamorphic belt, which reveals the existence of ocean subduction to south in the early Ordovician. </p><p>(3) inter arc basin. On both banks of Tuolai River to the east of Yanglong Township, there are early Middle Ordovician inter-arc basins with oceanic crust. </p><p>(4) middle Late Ordovician island arc. To the north of Tuolai River, there is a middle Late Ordovician island arc belt. Both sides of the island arc zone experienced strong ductile shear deformation, which recorded a complex arc-continent collision. </p><p>(5) fore-arc and oceanic lithosphere amalgamation zone (Fig.1). The Yushigou area has developed a fore-arc and oceanic lithospheric amalgamation zone, with weakly deformed fore-arc flysch basin, strongly deformed siliceous rocks, pillow Basalt, diabase, gabbro, peridotite and other rock assemblages.</p><p>Combined with the characteristics of arc-continent collision zone in the Western Pacific, there are two stages of shear zone series (Fig.2). One is ductile shear zones formed by the South dipping gneissic belt, revealing the existence of oceanic subduction accretion wedge and emplacement of high-pressure rocks. Another superimposed one is north dipping. This indicates that the arc-continent collision caused by back-arc reverse subduction, which ultimately controls the overall geometric and kinematic characteristics of the shear zones in the region.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.8219836ca50067454890161/sdaolpUECMynit/12UGE&app=m&a=0&c=40b3389c641f2d0ca723e1527c32927e&ct=x&pn=gepj.elif&d=1" alt=""></p><p>Figure 1 United sections showing a Caledonian trench-arc system in the Qilian Mountain, NW China.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.8def566da50066084890161/sdaolpUECMynit/12UGE&app=m&a=0&c=e82258ecc235c4e618abd6c035b58232&ct=x&pn=gepj.elif&d=1" alt=""></p><p>Figure 2 Structural analysis at Hongyahuo, indicating two stages of deformation.</p><p>The research has been supported by projects from the Ministry of Land and Resources (No.201211024-04; 1212011121188) and the 2020 undergraduate class construction project from China University of Geosciences (Beijing) (No. HHSKE202003).</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document