scholarly journals Centennial to millennial-scale monsoon changes since the last deglaciation linked to solar activities and North Atlantic cooling

Author(s):  
Xingxing Liu ◽  
Youbin Sun ◽  
Jef Vandenberghe ◽  
Peng Cheng ◽  
Xu Zhang ◽  
...  

<p>Rapid monsoon changes since the last deglaciation remain poorly constrained due to the scarcity of geological archives. Here we present a high-resolution scanning X-ray fluorescence (XRF) analysis of a 13.5-m terrace succession on the western Chinese Loess Plateau (CLP) to infer rapid monsoon changes since the last deglaciation. Our results indicate that Rb/Sr and Zr/Rb are sensitive indicators of chemical weathering and wind sorting, respectively, which are further linked to the strength of the East Asia summer monsoon (EASM) and the East Asia winter monsoon (EAWM). During the last deglaciation, two cold intervals of the Heinrich event 1 and Younger Dryas were characterized by intensified winter monsoon and weakened summer monsoon. The EAWM gradually weakened since the beginning of the Holocene, while the EASM remained steady till 9.9 ka and then grew stronger. Both the EASM and EAWM intensity were relatively weak during the middle Holocene, indicate a mid-Holocene climatic optimum. Rb/Sr and Zr/Rb exhibit an anti-phase relationship between the summer and winter monsoon changes on centennial timescale during 16~1 ka BP. Comparison of these monsoon changes with solar activity and North Atlantic cooling events reveals that both factors can lead to abrupt changes on the centennial timescale in the early Holocene. During the late Holocene, North Atlantic cooling became the major forcing of centennial monsoon events.</p>

2019 ◽  
Author(s):  
Xingxing Liu ◽  
Youbin Sun ◽  
Jef Vandenberghe ◽  
Peng Cheng ◽  
Xu Zhang ◽  
...  

Abstract. Rapid monsoon changes since the last deglaciation remain poorly constrained due to the scarcity of geological archives. Here we present a high-resolution scanning X-ray fluorescence (XRF) analysis of a 13.5 m terrace succession on the western Chinese Loess Plateau (CLP) to infer rapid monsoon changes since the last deglaciation. Our results indicate that Rb/Sr and Zr/Rb are sensitive indicators of chemical weathering and wind sorting, respectively, which are further linked to the strength of the East Asia summer and winter monsoon. These two parameters exhibit an anti-phase relationship between the summer and winter monsoon changes on centennial timescale during 16 ∼ 1 ka BP. Comparison of these monsoon changes with solar activity and North Atlantic cooling events reveals that both factors can lead to abrupt changes on the centennial timescale in the early Holocene. During the late Holocene, North Atlantic cooling became the major forcing of centennial monsoon events.


2020 ◽  
Vol 16 (1) ◽  
pp. 315-324 ◽  
Author(s):  
Xingxing Liu ◽  
Youbin Sun ◽  
Jef Vandenberghe ◽  
Peng Cheng ◽  
Xu Zhang ◽  
...  

Abstract. Rapid monsoon changes since the last deglaciation remain poorly constrained due to the scarcity of geological archives. Here we present a high-resolution scanning X-ray fluorescence (XRF) analysis of a 13.5 m terrace succession on the western Chinese Loess Plateau (CLP) to infer rapid monsoon changes since the last deglaciation. Our results indicate that Rb∕Sr and Zr∕Rb are sensitive indicators of chemical weathering and wind sorting, respectively, which are further linked to the strength of the East Asian summer monsoon (EASM) and the East Asian winter monsoon (EAWM). During the last deglaciation, two cold intervals of the Heinrich event 1 and Younger Dryas were characterized by intensified winter monsoon and weakened summer monsoon. The EAWM gradually weakened at the beginning of the Holocene, while the EASM remained steady till 9.9 ka and then grew stronger. Both the EASM and EAWM intensities were relatively weak during the Middle Holocene, indicating a mid-Holocene climatic optimum. Rb∕Sr and Zr∕Rb exhibit an antiphase relationship between the summer and winter monsoon changes on a centennial timescale during 16–1 ka. Comparison of these monsoon changes with solar activity and North Atlantic cooling events reveals that both factors can lead to abrupt changes on a centennial timescale in the Early Holocene. During the Late Holocene, North Atlantic cooling became the major forcing of centennial monsoon events.


2017 ◽  
Vol 89 (3) ◽  
pp. 619-628 ◽  
Author(s):  
Hong Ao ◽  
Mark J. Dekkers ◽  
Andrew P. Roberts ◽  
Eelco J. Rohling ◽  
Zhisheng An ◽  
...  

AbstractPre-Quaternary terrestrial climate variability is less well understood than that during the Quaternary. The continuous eolian Red Clay sequence underlying the well-known Quaternary loess-paleosol sequence on the Chinese Loess Plateau (CLP) provides an opportunity to study pre-Quaternary terrestrial climate variability in East Asia. Here, we present new mineral magnetic records for a recently found Red Clay succession from Shilou area on the eastern CLP, and demonstrate a marked East Asian climate shift across the Miocene-Pliocene boundary (MPB). Pedogenic fine-grained magnetite populations, ranging from superparamagnetic (SP)/single domain (SD) up to small pseudo-single domain (PSD) sizes (i.e., from <30 nm up to ~1000 nm), dominate the magnetic properties. Importantly, our mineral magnetic results indicate that both pedogenic formation of SP grains and transformation of SP grains to SD and small PSD grains accelerated across the MPB in the Shilou Red Clay, which are indicative of enhanced pedogenesis. We relate this enhanced pedogenesis to increased soil moisture availability on the CLP, associated with stronger Asian Summer Monsoon precipitation during an overall period of global cooling. Our study thus provides new insights into the Miocene-Pliocene climate transition in East Asia.


2020 ◽  
Vol 33 (17) ◽  
pp. 7455-7478
Author(s):  
Nanxuan Jiang ◽  
Qing Yan ◽  
Zhiqing Xu ◽  
Jian Shi ◽  
Ran Zhang

AbstractTo advance our knowledge of the response of midlatitude westerlies to various external forcings, we investigate the meridional shift of midlatitude westerlies over arid central Asia (ACA) during the past 21 000 years, which experienced more varied forcings than the present day based on a set of transient simulations. Our results suggest that the evolution of midlatitude westerlies over ACA and driving factors vary with time and across seasons. In spring, the location of midlatitude westerlies over ACA oscillates largely during the last deglaciation, driven by meltwater fluxes and continental ice sheets, and then shows a long-term equatorward shift during the Holocene controlled by orbital insolation. In summer, orbital insolation dominates the meridional shift of midlatitude westerlies, with poleward and equatorward migration during the last deglaciation and the Holocene, respectively. From a thermodynamic perspective, variations in zonal winds are linked with the meridional temperature gradient based on the thermal wind relationship. From a dynamic perspective, variations in midlatitude westerlies are mainly induced by anomalous sea surface temperatures over the Indian Ocean through the Matsuno–Gill response and over the North Atlantic Ocean by the propagation of Rossby waves, or both, but their relative importance varies across forcings. Additionally, the modeled meridional shift of midlatitude westerlies is broadly consistent with geological evidence, although model–data discrepancies still exist. Overall, our study provides a possible scenario for a meridional shift of midlatitude westerlies over ACA in response to various external forcings during the past 21 000 years and highlights important roles of both the Indian Ocean and the North Atlantic Ocean in regulating Asian westerlies, which may shed light on the behavior of westerlies in the future.


2018 ◽  
Vol 197 ◽  
pp. 288-306 ◽  
Author(s):  
Zhifang Xiong ◽  
Tiegang Li ◽  
Fengming Chang ◽  
Thomas J. Algeo ◽  
Peter D. Clift ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 913-926 ◽  
Author(s):  
Jai Chowdhry Beeman ◽  
Léa Gest ◽  
Frédéric Parrenin ◽  
Dominique Raynaud ◽  
Tyler J. Fudge ◽  
...  

Abstract. The last deglaciation, which occurred from 18 000 to 11 000 years ago, is the most recent large natural climatic variation of global extent. With accurately dated paleoclimate records, we can investigate the timings of related variables in the climate system during this major transition. Here, we use an accurate relative chronology to compare temperature proxy data and global atmospheric CO2 as recorded in Antarctic ice cores. In addition to five regional records, we compare a δ18O stack, representing Antarctic climate variations with the high-resolution robustly dated WAIS Divide CO2 record (West Antarctic Ice Sheet). We assess the CO2 and Antarctic temperature phase relationship using a stochastic method to accurately identify the probable timings of changes in their trends. Four coherent changes are identified for the two series, and synchrony between CO2 and temperature is within the 95 % uncertainty range for all of the changes except the end of glacial termination 1 (T1). During the onset of the last deglaciation at 18 ka and the deglaciation end at 11.5 ka, Antarctic temperature most likely led CO2 by several centuries (by 570 years, within a range of 127 to 751 years, 68 % probability, at the T1 onset; and by 532 years, within a range of 337 to 629 years, 68 % probability, at the deglaciation end). At 14.4 ka, the onset of the Antarctic Cold Reversal (ACR) period, our results do not show a clear lead or lag (Antarctic temperature leads by 50 years, within a range of −137 to 376 years, 68 % probability). The same is true at the end of the ACR (CO2 leads by 65 years, within a range of 211 to 117 years, 68 % probability). However, the timings of changes in trends for the individual proxy records show variations from the stack, indicating regional differences in the pattern of temperature change, particularly in the WAIS Divide record at the onset of the deglaciation; the Dome Fuji record at the deglaciation end; and the EDML record after 16 ka (EPICA Dronning Maud Land, where EPICA is the European Project for Ice Coring in Antarctica). In addition, two changes – one at 16 ka in the CO2 record and one after the ACR onset in three of the isotopic temperature records – do not have high-probability counterparts in the other record. The likely-variable phasing we identify testify to the complex nature of the mechanisms driving the carbon cycle and Antarctic temperature during the deglaciation.


Nature ◽  
2001 ◽  
Vol 413 (6855) ◽  
pp. 548-548 ◽  
Author(s):  
Claire Waelbroeck ◽  
Jean-Claude Duplessy ◽  
Elisabeth Michel ◽  
Laurent Labeyrie ◽  
Didier Paillard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document