Geophysical and geomorphological observations of the glacier-covered, subantarctic Mount Michael volcano (Saunders Island), South Sandwich Islands

Author(s):  
Nicole Richter ◽  
Philip Leat ◽  
Allan Derrien ◽  
Paul Wintersteller ◽  
Martin Meschede ◽  
...  

<p>The nine active volcanoes of the sub-Antarctic South Sandwich Islands are a particularly remote region of active volcanism. Remote sensing methods, including satellite monitoring and aerial surveys, besides rare ship visits during austral summers, are the only means of investigating the uninhabited and largely ice-covered volcanoes. Mount Michael volcano on Saunders Island hosts a permanent active lava lake within its summit crater, a sure indicator of the existence of a shallow magmatic storage and transport system of unknown architecture and depth. Also, more than 75 % of the island’s area is glacier covered, which makes the island an important study site for investigating volcano-glacier interactions in the sub-Antarctic climate zone. </p><p>We describe new data for the active Mount Michael volcano on Saunders Island, including marine bathymetric and satellite-derived observational data, UAV-derived topographic data, and infra-red camera observations. This data together provide a much higher resolution understanding of the topography, geomorphology, glacial state and dynamics, as well as status of volcanic activity than has been previously achieved. We present a geomorphological and structural analysis of the outer subaerial and shallower submarine flanks of Saunders Island, estimate glacier volumes, morphologies and motion rates, and relate this to the underlying volcano morphology, structural architecture, and edifice stability. All of this is pioneer work at a remote volcano that can be largely regarded as terra incognita. With this study we highlight the unprecedented detail and the valuable information that can be retrieved from modern generation satellites, such as TerraSAR-X and Sentinel-2, as well as UAV-based photogrammetry in particularly remote and inaccessible locations on Earth.</p>

2021 ◽  
Author(s):  
N.V. Rodionova

The paper considers the use of multispectral data from the Landsat-8, Sentinel-2, Aqua and Terra satellites for monitoring pollution in the areas of open-pit coal mines in the Iskitim district of the Novosibirsk region for the period 2013–2020. The change in the values of the reflection coefficient (RC) from the surface and water bodies, the snow index NDSI during the snowmelt period, the change of NDVI in the summer, in the area of Kolyvansky and Vostochny coal mines and in the area of the Linevo village are considered. The dynamics of the aerosol optical thickness (AOT) changes, CO and CH4 concentrations in the atmosphere of the Iskitim district using the Giovanni data analysis and visualization system are shown.


Author(s):  
Dmytro Mozgovoy

Automated image processing methodology is proposed for all-weather satellite monitoring of floods based on C-band radar data, which allows to determine the boundaries and areas of flooded areas when assessing the magnitude, dynamics and consequences of floods. Processing results comparison of medium spatial resolution scanner and radar images from Sentinel-1 and Sentinel-2 satellites is made. The advantages of a radar survey with cloudiness in the monitoring area are shown.


2019 ◽  
Vol 1 (7) ◽  
pp. 82-88
Author(s):  
I. V. Matelenok ◽  
N. A. Zhilnikova ◽  
V. O. Smirnova ◽  
A. S. Smirnova

The most complete information on the state of different man-made objects, collected with on-site and remote sensing methods, is required to ensure environmental and technospheric safety at the regional scale. The procedures of oil tank detection traditionally utilize high-cost, ultra-high-resolution images. The research is devoted to studying the possibility of using high and mediumresolution data from Landsat‑8 and Sentinel‑2 sensors to handle the task. Operating of the parts of the detection algorithms used in practice was analyzed, and some of them were selected as workable options which lead to satisfactory results being applied to data from mentioned instruments. A new technique of tank identifying which consists of classification, blob detection and filtering steps was developed. Testing of proposed solutions on data on the territory of Chaunsky District of Chukotka Autonomous Okrug showed the possibility of their use for detecting objects of the considered category.


Author(s):  
Francesco Marchese ◽  
Nicola Genzano ◽  
Michael Nolde ◽  
Alfredo Falconieri ◽  
Nicola Pergola ◽  
...  
Keyword(s):  

2001 ◽  
Vol 172 (2) ◽  
pp. 177-188 ◽  
Author(s):  
Jean-Francois Lenat ◽  
Patrick Bachelery ◽  
Frederic Desmulier

Abstract A large lava flow field, essentially constituted of "pahoehoe" flows, forms a relatively monotonous area on the north-west flank of the terminal cone of Piton de la Fournaise and on a large part of the Enclos floor. We named this unit "champ de lave de l'Enclos Fouque" (CLEF). To the east, more recent lava flows almost completely cover the CLEF. Mapping of the CLEF has been attempted using satellite imagery. Radar (SIR-C) and SPOT images have been used. Both types of images lead to comparable results for the surface of the CLEF, estimated to 11 km 2 . On satellite images, only a general map of the facies of the CLEF can be done. Air photos and ground observations allow to characterize more precisely the facies defined from satellite images. On the slopes of the Central Cone, the surface of the CLEF is mostly composed of tumuli that may produce small lava flows at their downhill base. On the floor of the Enclos, the CLEF is constantly formed by a multitude of intricate small flows. Except for small "aa" patches, surfaces are "pahoehoe". Tumuli, pressure ridges and collapsed plates are common features of the CLEF. Near the NW border of Enclos, the surface becomes less regular, with a higher proportion of "aa" patches and tilted slabs. This is probably due to the increase of slope in this area. In the vicinity of Bory crater contemporaneous welded scoria cover a zone extending 150-200 m from the crater. Several elements, found in various historical documents collected by Lacroix [1936 and 1938], bring evidence that the CLEF may result from a succession of events between the years 1750's to the 1790's. During this period, the volcano has been virtually continuously in eruption. Bory crater was the only active crater until 1766, when a new summit crater was formed by collapse, 400 m east of Bory crater. In the following years, this 1766 crater was filled by lava emissions which erected a gigantic tumulus, 50 m high, called Mamelon central. Several large lava flows, some of them reaching the sea, are unambiguously described as emitted from the summit craters. One of the main event appears to be the phase that occurred in 1753 (or 1759 according to different authors). This phase was associated to felt earthquakes and widespread ash-falls in the island. Lava flows covered most the western part of Enclos and reached the sea to the east. Whereas the activity of 1753 (1759 ?) appears as paroxysmal, extensive lava flows are described until 1794. In 1791, a new crater formed south of the 1766 crater. In 1801, Bory de St-Vincent [1804] observed an active lava lake inside this 1791 crater. In summary, it appears that quasi-continuous activity took place during the second half of the 18th century at Piton de la Fournaise, with lava flows covering almost all the Enclos and Grand Brule areas. It is obvious that the presently outcropping surface of the CLEF is only a fraction of its former extension. From the above-mentioned historic descriptions, it is reasonable to assume the CLEF may have recovered the entire surface of the Enclos Fouque and the Grand Brule depression. The surface extension of the CLEF would thus lie between 11 km 2 , its presently observed area, to ca. 90 km 2 . The compounded thickness of the CLEF has not been directly observed. In the rim of Dolomieu crater, a series of lava flows thought to represent the CLEF is about 25 m thick, but this thickness is that of the shield built around the vents and not that of the lava field. Using statistical laws for strombolian cones morphometry from Wood [1980], the thickness of the CLEF may be approached considering the crater diameter of 3 cones located in the north-western part of Enclos and partially flooded by the CLEF. We obtain estimates of 5 to 15 m. If Enclos has been entirely covered by the CLEF and for a mean thickness of 5 to 10 m, then the volume of the CLEF eruption is 450 to 900X10 6 m 3 . Mineralogical and chemical compositions of the CLEF lavas are similar to those of the transitional olivine basalts of the historic period [steady-state basalts, Albarede et al, 1997]. The chemical compositions vary somewhat due to variable modal olivine phenocrysts abundances and are characteristic of a rapid transfer of magma from deep reservoirs with virtually no low-pressure evolution. Major changes of the summit craters were associated to this eruption as a result of the unusually prolonged magmatic activity at Piton de la Fournaise during decades. The occurrence of similar phases at Piton de la Fournaise in the future can be appraised with reference to Kilauea. Holcomb [1987] reports 7 long-lived eruptions at Kilauea in the last 3 centuries. Thus, although not frequent, this type of event is not uncommon for Kilauea. By analogy, it must be considered as probable that Piton de la Fournaise will experience new long-lived eruptions in the future.


Author(s):  
Rasma Tretjakova ◽  
Sergejs Kodors ◽  
Juris Soms

The survey of lake sediments is complex, time consuming and costly process with risks to human health. Additionally, manually obtained sediment samples provide incomplete data about a survey region. In turn, remote sensing methods are cost-effective and can provide continuous data about a survey region. Therefore, authors decided to perform a pilot experiment with a remote sensing method in order to detect clay sediments deposited in lakebeds. The evaluated method is the analysis of spectral images of Sentinel-2. Pearson coefficient and C4.5 datamining methods were applied for data analysis. Survey objects are Latgale lakes with and without clay sediments. The pilot experiment showed, that spectral imaging of lake water is not applicable method to detect definitely clay sediments in lakes, however, research results provide ideas about indirect methods, which must be studied in the future.


2019 ◽  
Vol 11 (10) ◽  
pp. 1182 ◽  
Author(s):  
Marco Laiolo ◽  
Maurizio Ripepe ◽  
Corrado Cigolini ◽  
Diego Coppola ◽  
Massimo Della Schiava ◽  
...  

After a month-long increase in activity at the summit craters, on 24 December 2018, the Etna volcano experienced a short-lived lateral effusive event followed by a rapid resumption of low-level explosive and degassing activity at the summit vents. By combining space (Moderate Resolution Imaging Spectroradiometer; MODIS and SENTINEL-2 images) and ground-based geophysical data, we track, in near real-time, the thermal, seismic and infrasonic changes associated with Etna’s activity during the September–December 2018 period. Satellite thermal data reveal that the fissural eruption was preceded by a persistent increase of summit activity, as reflected by overflow episodes in New SouthEast Crater (NSE) sector. This behavior is supported by infrasonic data, which recorded a constant increase both in the occurrence and in the energy of the strombolian activity at the same crater sectors mapped by satellite. The explosive activity trend is poorly constrained by the seismic tremor, which shows instead a sudden increase only since the 08:24 GMT on the 24 December 2018, almost concurrently with the end of the infrasonic detections occurred at 06:00 GMT. The arrays detected the resumption of infrasonic activity at 11:13 GMT of 24 December, when tremors almost reached the maximum amplitude. Infrasound indicates that the explosive activity was shifting from the summit crater along the flank of the Etna volcano, reflecting, with the seismic tremor, the intrusion of a gas-rich magma batch along a ~2.0 km long dyke, which reached the surface generating an intense explosive phase. The dyke propagation lasted for almost 3 h, during which magma migrated from the central conduit system to the lateral vent, at a mean speed of 0.15–0.20 m s−1. Based on MODIS and SENTINEL 2 images, we estimated that the summit outflows erupted a volume of lava of 1.4 Mm3 (±0.5 Mm3), and that the lateral effusive episode erupted a minimum volume of 0.85 Mm3 (±0.3 Mm3). The results presented here outline the support of satellite data on tracking the evolution of volcanic activity and the importance to integrate satellite with ground-based geophysical data in improving assessments of volcanic hazard during eruptive crises.


2021 ◽  
pp. 1126-1129
Author(s):  
E.V. Boldanova ◽  

Abstract. The remote sensing methods usage makes it possible to increase the accuracy and efficiency of data on the state of water bodies. Among the many satellite systems, Sentinel-2 is the most suitable for inland water assessment. One of the abiotic factors in assessing the trophicity of water bodies is the transparency along the Secchi disk. Models for calculating water transparency have been developed for individual water bodies. The analysis showed that these models don t adequately describe the transparency for Lake Baikal. Based on the correlation-regression analysis, the parameters of the exponential function were estimated for calculating the transparency of the surface waters of Lake Baikal using the values of the Sentinel-2 spectral channels. Despite the inaccuracy of the model for assessing the transparency in the coastal zone, it can be used to assess the seasonal and interannual transparency of the surface waters of Lake Baikal.


Author(s):  
J. Martínez-Sánchez ◽  
L. M. González-de Santos ◽  
A. Novo ◽  
H. González-Jorge

<p><strong>Abstract.</strong> Image classification stands as an essential tool for automated mapping, that is demanded by agencies and stakeholders dealing with geospatial information. Decreasing costs or UAV-based surveying and open access to high resolution satellite images such as that provided by European Union’s Copernicus programme are the basis for multi-temporal landscape analysis and monitoring. Besides that, invasive alien species are considered a risk for biodiversity and their inventory is needed for further control and eradication. In this work, a methodology for semi-automatic detection of invasive alien species through UAV surveying and Sentinel 2 satellite monitoring is presented and particularized for <i>Acacia dealbata</i> Link species in the province of Pontevedra, in NW Spain. We selected a scenario with notable invasion of <i>Acaciae</i> and performed a UAS surveying to outline feasible training areas. Such areas were used as bounds for obtaining a spectral response of the cover from Sentinel 2 images with a level of processing 2A, that was used for invasive area detection. Sparse detected areas were treated as a seed for a region growing step to obtain the final map of alien species.</p>


Sign in / Sign up

Export Citation Format

Share Document