scholarly journals Swept under the carpet: the effect of organic matter burial in global biogeochemical ocean models

2013 ◽  
Vol 10 (7) ◽  
pp. 10859-10911 ◽  
Author(s):  
I. Kriest ◽  
A. Oschlies

Abstract. Although of substantial importance for marine tracer distributions and eventually global carbon, oxygen, and nitrogen fluxes, the interaction between sinking and remineralization of organic matter, benthic fluxes and burial is not always represented consistently in global biogeochemical models. We here aim to investigate the relationships between these processes with a suite of global biogeochemical models, each simulated over millennia, and compared against observed distributions of pelagic tracers and benthic and pelagic fluxes. We concentrate on the representation of sediment-water interactions in common numerical models, and investigate their potential impact on simulated global sediment-water fluxes and nutrient and oxygen distributions. We find that model configurations with benthic burial simulate global oxygen well over a wide range of possible sinking flux parameterizations, making the model more robust with regard to uncertainties about the remineralization length scale. On a global scale, burial mostly affects oxygen in the meso- to bathypelagic zone. While all model types show an almost identical fit to observed pelagic particle flux, and the same sensitivity to particle sinking speed, comparison to observational estimates of benthic fluxes reveals a more complex pattern and may be influenced by the data distribution and methodology. Still, evaluating model results against observed pelagic and benthic fluxes of organic matter can complement model assessments based on more traditional tracers such as nutrients or oxygen. Based on a combined metric of dissolved tracers and biogeochemical fluxes, we here identify two model descriptions of burial as suitable candidates for further experiments and eventual model refinements.

2013 ◽  
Vol 10 (12) ◽  
pp. 8401-8422 ◽  
Author(s):  
I. Kriest ◽  
A. Oschlies

Abstract. Although of substantial importance for marine tracer distributions and eventually global carbon, oxygen, and nitrogen fluxes, the interaction between sinking and remineralization of organic matter, benthic fluxes and burial is not always represented consistently in global biogeochemical models. We here aim to investigate the relationships between these processes with a suite of global biogeochemical models, each simulated over millennia, and compared against observed distributions of pelagic tracers and benthic and pelagic fluxes. We concentrate on the representation of sediment–water interactions in common numerical models, and investigate their potential impact on simulated global sediment–water fluxes and nutrient and oxygen distributions. We find that model configurations with benthic burial simulate global oxygen well over a wide range of possible sinking flux parameterizations, making the model more robust with regard to uncertainties about the remineralization length scale. On a global scale, burial mostly affects oxygen in the meso- to bathypelagic zone. While all model types show an almost identical fit to observed pelagic particle flux, and the same sensitivity to particle sinking speed, comparison to observational estimates of benthic fluxes reveals a more complex pattern, but definite interpretation is not straightforward because of heterogeneous data distribution and methodology. Still, evaluating model results against observed pelagic and benthic fluxes of organic matter can complement model assessments based on more traditional tracers such as nutrients or oxygen. Based on a combined metric of dissolved tracers and biogeochemical fluxes, we here identify two model descriptions of burial as suitable candidates for further experiments and eventual model refinements.


2020 ◽  
Author(s):  
Anna J. P. Gülcher ◽  
Maxim D. Ballmer ◽  
Paul J. Tackley ◽  
Paula Koelemeijer

<p>Despite stirring by vigorous convection over billions of years, the Earth’s lower mantle appears to be chemically heterogeneous on various length scales. Constraining this heterogeneity is key for assessing Earth’s bulk composition and thermochemical evolution, but remains a scientific challenge that requires cross-disciplinary efforts. On scales below ~1 km, the concept of a “marble cake” mantle has gained wide acceptance, emphasising that recycled oceanic lithosphere, deformed into streaks of depleted and enriched compositions, makes up much of the mantle. On larger scales (10s-100s of km), compositional heterogeneity may be preserved by delayed mixing of this marble cake with either intrinsically-dense or intrinsically-strong materials. Intrinsically dense materials may accumulate as piles at the core-mantle boundary, while intrinsically viscous domains (e.g., enhanced in the strong mineral bridgmanite) may survive as “blobs” in the mid-mantle for large timescales, such as plums in the mantle “plum pudding”<sup>1,2</sup>. While many studies have explored the formation and preservation of either intrinsically-dense (recycled) or intrinsically-strong (primordial) heterogeneity, only few if any have quantified mantle dynamics in the presence of different types of heterogeneity with distinct physical properties.<span> </span></p><p>To address this objective, we use state-of-the-art 2D numerical models of global-scale mantle convection in a spherical-annulus geometry. We explore the effects of the <em>(i)</em> physical properties of primordial material (density, viscosity), <em>(ii)</em> temperature/pressure dependency of viscosity, <em>(iii)</em> lithospheric yielding strength, and <em>(iv)</em> Rayleigh number on mantle dynamics and mixing. Models predict that primordial heterogeneity is preserved in the lower mantle over >4.5 Gyr as discrete blobs for high intrinsic viscosity contrast (>30x) and otherwise for a wide range of parameters. In turn, recycled oceanic crust is preserved in the lower mantle as “marble cake” streaks or piles, particularly in models with a relatively cold and stiff mantle. Importantly, these recycled crustal heterogeneities can co-exist with primordial blobs, with piles often tending to accumulate beneath the primordial domains. This suggests that the modern mantle may be in a hybrid state between the “marble cake” and “plum pudding” styles.<span> </span></p><p>Finally, we put our model predictions in context with recent discoveries from seismology. We calculate synthetic seismic velocities from predicted temperatures and compositions, and compare these synthetics to tomography models, taking into account the limited resolution of seismic tomography. Convection models including preserved bridgmanite-enriched domains along with recycled piles have the potential of reconciling recent seismic observations of lower-mantle heterogeneity<sup>3</sup> with the geochemical record from ocean-island basalts<sup>4,5</sup>, and are therefore relevant for assessing Earth’s bulk composition and long-term evolution.<span> </span></p><p><sup>1</sup> Ballmer et al. (2017), <em>Nat. Geosci</em>., 10.1038/ngeo2898<br><sup>2</sup> Gülcher et al. (in review), <em>EPSL</em>: Variable dynamic styles of primordial heterogeneity preservation in Earth’s lower mantle <br><sup>3</sup> Waszek et al. (2018), <em>Nat. Comm., </em>10.1038/s41467-017-02709-4 <br><sup>4</sup> Hofmann (1997), <em>Nature, </em>10.1038/385219a0; <br><sup>5</sup> Mundl et al. (2017), <em>Science, </em>10.1126/science.aal4179</p>


2021 ◽  
Author(s):  
James C. Ferguson ◽  
Tobias Bolch ◽  
Andreas Vieli

<p>The transient response of debris-covered glaciers to a changing climate is governed by nonlinear feedbacks between ice dynamics, debris transport, and glacier geometry and that act over a wide range of temporal and spatial scales. Current numerical models that are able to accurately represent the relevant physical processes are computationally expensive since they must track the debris transport not only at the glacier surface but also englacially. This makes such models difficult to use for simulations at the regional to global scale.</p><p>In order to address this challenge, we developed a fully coupled numerical model that solves both englacial debris transport and ice flow and includes the effect of debris cover on surface ablation. We use this model to evaluate different simplified approaches to modelling debris-covered glaciers. These simplifications include parametrized 1-D debris transport models, parametrized models of surface mass balance that include debris cover effects, and zero-dimensional models. We compare the model performances using a number of tests with an idealized synthetic glacier geometry and a range of forcings, thereby allowing for an evaluation of the relative merits of each approach. A key goal of this work is to provide guidance and tools for modelling studies involving debris cover at the regional to global scale.</p>


2021 ◽  
Author(s):  
Alexandre Mignot ◽  
Hervé Claustre ◽  
Gianpiero Cossarini ◽  
Fabrizio D'Ortenzio ◽  
Elodie Gutknecht ◽  
...  

Abstract. Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and ocean health. Classically, validation of such models relies on comparison with surface quantities from satellite (such as chlorophyll-a concentrations), climatologies, or sparse in situ data (such as cruises observations, and permanent fixed oceanic stations). However, these datasets are not fully suitable to assess how models represent many climate-relevant biogeochemical processes.  These limitations now begin to be overcome with the availability of a large number of vertical profiles of light, pH, oxygen, nitrate, chlorophyll-a concentrations and particulate backscattering acquired by the Biogeochemical-Argo (BGC-Argo) floats network. Additionally, other key biogeochemical variables such as dissolved inorganic carbon and alkalinity, not measured by floats, can be predicted by machine learning-based methods applied to float oxygen concentrations. Here, we demonstrate the use of the global array of BGC-Argo floats for the validation of biogeochemical models at the global scale. We first present 18 key metrics of ocean health and biogeochemical functioning to quantify the success of BGC model simulations. These metrics are associated with the air-sea CO2 flux, the biological carbon pump, oceanic pH, oxygen levels and Oxygen Minimum Zones (OMZs). The metrics are either a depth-averaged quantity or correspond to the depth of a particular feature. We also suggest four diagnostic plots for displaying such metrics.


2014 ◽  
Vol 11 (19) ◽  
pp. 5381-5398 ◽  
Author(s):  
T. DeVries ◽  
J.-H. Liang ◽  
C. Deutsch

Abstract. The sinking and decomposition of particulate organic matter are critical processes in the ocean's biological pump, but are poorly understood and crudely represented in biogeochemical models. Here we present a mechanistic particle remineralization and sinking model (PRiSM) that solves the evolution of the particle size distribution with depth. The model can represent a wide range of particle flux profiles, depending on the surface particle size distribution, the relationships between particle size, mass and sinking velocity, and the rate of particle mass loss during decomposition. The particle flux model is embedded in a data-constrained ocean circulation and biogeochemical model with a simple P cycle. Surface particle size distributions are derived from satellite remote sensing, and the remaining uncertain parameters governing particle dynamics are tuned to achieve an optimal fit to the global distribution of phosphate. The resolution of spatially variable particle sizes has a significant effect on modeled organic matter production rates, increasing production in oligotrophic regions and decreasing production in eutrophic regions compared to a model that assumes spatially uniform particle sizes and sinking speeds. The mechanistic particle model can reproduce global nutrient distributions better than, and sediment trap fluxes as well as, other commonly used empirical formulas. However, these two independent data constraints cannot be simultaneously matched in a closed P budget commonly assumed in ocean models. Through a systematic addition of model processes, we show that the apparent discrepancy between particle flux and nutrient data can be resolved through P burial, but only if that burial is associated with a slowly decaying component of organic matter such as might be achieved through protection by ballast minerals. Moreover, the model solution that best matches both data sets requires a larger rate of P burial (and compensating inputs) than have been previously estimated. Our results imply a marine P inventory with a residence time of a few thousand years, similar to that of the dynamic N cycle.


2021 ◽  
Author(s):  
Tom Hull ◽  
Naomi Greenwood ◽  
Antony Birchill ◽  
Alexander Beaton ◽  
Mathew Palmer ◽  
...  

Abstract. The continental shelf seas are important at a global scale for ecosystem services. These highly dynamic regions are under a wide range of stresses and as such future management requires appropriate monitoring measures. A key metric to understanding and predicting future change are the rates of biological productivity. We present here the use of a single autonomous underwater glider with oxygen (O2) and total oxidised nitrogen (NOx− = NO3− + NO2−) sensors during a spring bloom as part of a 2019 pilot autonomous shelf sea monitoring study. We find exceptionally high rates of net community production using both O2 and NOx− water column inventory changes, corrected for air-sea gas exchange in case of O2. We compare these rates with 2007 and 2008 mooring observations finding similar rates of NOx− consumption. With these complementary methods we determine the O:N amount ratio of the newly produced organic matter (7.8±0.4) and the overall O2:N ratio for the total water column (5.7±0.4). The former is close to the canonical Redfield O2:N ratio of 8.6±1.0, whereas the latter may be explained by a combination of new organic matter production and preferential remineralisation of more reduced organic matter at a higher O2:N ratio below the euphotic zone.


2021 ◽  
Vol 18 (23) ◽  
pp. 6167-6180
Author(s):  
Tom Hull ◽  
Naomi Greenwood ◽  
Antony Birchill ◽  
Alexander Beaton ◽  
Matthew Palmer ◽  
...  

Abstract. The continental shelf seas are important at a global scale for ecosystem services. These highly dynamic regions are under a wide range of stresses, and as such future management requires appropriate monitoring measures. A key metric to understanding and predicting future change are the rates of biological production. We present here the use of an autonomous underwater glider with an oxygen (O2) and a wet-chemical microfluidic total oxidised nitrogen (NOx-=NO3-+NO2-) sensor during a spring bloom as part of a 2019 pilot autonomous shelf sea monitoring study. We find exceptionally high rates of net community production using both O2 and NOx- water column inventory changes, corrected for air–sea gas exchange in case of O2. We compare these rates with 2007 and 2008 mooring observations finding similar rates of NOx- consumption. With these complementary methods we determine the O2:N amount ratio of the newly produced organic matter (7.8 ± 0.4) and the overall O2:N ratio for the total water column (5.7 ± 0.4). The former is close to the canonical Redfield O2:N ratio of 8.6 ± 1.0, whereas the latter may be explained by a combination of new organic matter production and preferential remineralisation of more reduced organic matter at a higher O2:N ratio below the euphotic zone.


2014 ◽  
Vol 11 (3) ◽  
pp. 3653-3699 ◽  
Author(s):  
T. DeVries ◽  
J.-H. Liang ◽  
C. Deutsch

Abstract. The sinking and decomposition of particulate organic matter are critical processes in the ocean's biological pump, but are poorly understood and crudely represented in biogeochemical models. Here we present a mechanistic model for particle fluxes in the ocean that solves the evolution of the particle size distribution with depth. The model can represent a wide range of particle flux profiles, depending on the surface particle size distribution, the relationships between particle size, mass and velocity, and the rate of particle mass loss during decomposition. Spatially variable flux profiles are embedded in a data-constrained ocean circulation model, where the most uncertain parameters governing particle dynamics are tuned to achieve an optimal fit to the global distribution of phosphate. The resolution of spatially variable particle sizes has a significant effect on modeled organic matter production rates, increasing production in oligotrophic regions and decreasing production in eutrophic regions compared to a model that assumes spatially uniform particle sizes and sinking fluxes. The mechanistic particle model can reproduce global nutrient distributions better than, and sediment trap fluxes as well as, other commonly used empirical formulas. However, these independent data constraints cannot be simultaneously matched in a closed P budget commonly assumed in ocean models. Through a systematic addition of model processes, we show that the apparent discrepancy between particle flux and nutrient data can be resolved through P burial, but only if that burial is associated with a slowly decaying component of organic matter as might be achieved through protection by ballast minerals. Moreover, the model solution that best matches both datasets requires a larger rate of P burial (and compensating inputs) than have been previously estimated. Our results imply a marine PO4 inventory with a residence time of a few thousand years, similar to that of the relatively dynamic N cycle.


2021 ◽  
Author(s):  
Yuan Liu ◽  
Jing Tian ◽  
Nianpeng He ◽  
Lisa Tiemann

Abstract Soil organic matter (SOM) plays an important role in mitigating climate change and sustaining soil health and food production 1,2. Mounting evidence suggests that microbial necromass is the main contributor to SOM 3; however, we lack quantification of microbial necromass at a global scale, especially in subsoils. Here, we generate, for the first time, global distribution maps of microbial necromass carbon (C) and nitrogen (N) and contributions to SOM in topsoil and subsoil. Globally, necromass concentrations varied widely across ecosystems and by latitude, contributing 19-60% to SOC and 41-92% to soil N stocks, with particularly large accumulations in boreal and tropical ecosystems. On average, fungal necromass contributions to SOM are 3x greater than bacterial, although this varied across ecosystems. Microbial necromass contributions to SOC are strongly associated with soil C:N ratios and pH; necromass contributions are greater in soils with narrow C:N ratios and higher pH. Microbial necromass is on average 23 and 77 times greater than living microbial biomass in topsoil and subsoil, respectively. These data highlight the importance of necromass contributions to SOM, especially soil N, and the need for spatially resolved necromass data sets that can be used in biogeochemical models to estimate SOM dynamics more accurately.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.


Sign in / Sign up

Export Citation Format

Share Document