scholarly journals A Multi-model Assessment of the Changing Risks of Extreme Rainfall Events in Bangladesh under 1.5 and 2.0 degrees’ warmer worlds

Author(s):  
Ruksana Rimi ◽  
Karsten Haustein ◽  
Emily Barbour ◽  
Sarah Sparrow ◽  
Sihan Li ◽  
...  

<p>For public, scientists and policy-makers, it is important to know to what extent human-induced climate change played (or did not play) a role behind changing risks of extreme weather events. Probabilistic event attribution (PEA) can provide scientific information regarding this association and reveal whether and to what extent external drivers of climate change have influenced the probability of high-impact weather events. To date, most of the PEA-based studies have focused on extreme events of mid-latitudes and predominantly events that have occurred in the developed countries. Developing countries located at the tropical monsoon regions are underrepresented in this field of research, despite that fact that these countries are highly climate vulnerable, often experience extreme weather events that cause severe damages and have the least capacity to adapt. </p><p>Bangladesh, a South Asian country with tropical monsoon climate, is a hotspot of climate change impacts as it is vulnerable to a combination of increasing challenges from record-breaking temperatures, extreme rainfall events, more intense river floods, tropical cyclones, and rising sea levels. The unique geographical location of this country particularly exposes it to high risks of flooding and landslides caused by heavy rainfall events. Observation based studies indicate that the frequency of high-intensity rainfall events may have already increased, with significant repercussions for agriculture, health, ecosystems and economic development.</p><p>Using high resolution regional climate model (RCM) simulations from weather@home, here we quantify the risks of extreme rainfall events in Bangladesh under pre-industrial, present-day and future climate scenarios of the Paris Agreement temperature targets of 1.5°C and 2°C warming. Additionally, we assess the risks under greenhouse gas (GHG)-only climate scenario where anthropogenic aerosols are reduced to pre-industrial levels. In order to test the robustness of the RCM results, available four atmosphere only global circulation model (AGCM) simulations from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project are analysed. This enabled for the first time, a multi-model assessment of the changing risks of extreme rainfall events in Bangladesh considering anthropogenic climate change drivers.</p><p>Findings suggest that both a 1.5°C and 2.0°C warmer world is poised to experience increased seasonal mean and, to a lesser extent, increased extreme rainfall events. The risk of a 1 in 100 year rainfall event under current climate condition has already increased significantly compared with pre-industrial levels. Substantial reduction in the impacts resulting from 1.5°C compared with 2°C warming is reported in this study; however the difference is spatially and temporally variable across Bangladesh. This paper highlights that reduction in the anthropogenic aerosols play an important role in determining the overall future climate change impacts; by exacerbating the effects of GHG induced global warming and thereby increasing the rainfall intensity. The policy-makers therefore need to take stronger climate actions to avoid impacts of 2°C warmer world and consider future changes in the risks of extreme rainfall events in the face of changeable GHG and aerosol impacts.</p>

2018 ◽  
Author(s):  
Ruksana H. Rimi ◽  
Karsten Haustein ◽  
Emily J. Barbour ◽  
Sarah N. Sparrow ◽  
Sihan Li ◽  
...  

Abstract. Anthropogenic climate change is likely to increase the frequency of extreme weather events in future. Previous studies have robustly shown how and where climate change has already changed the risks of weather extremes. However, developing countries have been somewhat underrepresented in these studies, despite high vulnerability and limited capacities to adapt. How additional global warming would affect the future risks of extreme rainfall events in Bangladesh needs to be addressed to limit adverse impacts. Our study focuses on understanding and quantifying the relative risks of seasonal extreme rainfall events in Bangladesh under the Paris Agreement temperature goals of 1.5 °C and 2 °C warming above pre-industrial levels. In particular, we investigate the influence of anthropogenic aerosols on these risks given their likely future reduction and resulting amplification of global warming. Using large ensemble regional climate model simulations from weather@home under different forcing scenarios, we compare the risks of rainfall events under pre-industrial (natural), current (actual), 1.5 °C, and 2.0 °C warmer and greenhouse gas only (anthropogenic aerosols removed) conditions. We find that the risk of a 1 in 100 year rainfall event has already increased significantly compared with pre-industrial levels across parts of Bangladesh, with additional increases likely for 1.5 and 2.0 degree warming (of up to 5.5 times higher, with an uncertainty range of 3.5 to 7.8 times). Impacts were observed during both the pre-monsoon and monsoon periods, but were spatially variable across the country in terms of the level of impact. Results also show that reduction in anthropogenic aerosols plays an important role in determining the overall future climate change impacts; by exacerbating the effects of GHG induced global warming and thereby increasing the rainfall intensity. We highlight that the net aerosol effect varies from region to region within Bangladesh, which leads to different outcomes of aerosol reduction on extreme rainfall statistics, and must therefore be considered in future risk assessments. Whilst there is a substantial reduction in the impacts resulting from 1.5 °C compared with 2 °C warming, the difference is spatially and temporally variable, specifically with respect to seasonal extreme rainfall events.


2017 ◽  
Vol 8 (3) ◽  
pp. 388-411 ◽  
Author(s):  
Hamed Tavakolifar ◽  
Ebrahim Shahghasemi ◽  
Sara Nazif

Climate change has impacted all phenomena in the hydrologic cycle, especially extreme events. General circulation models (GCMs) are used to investigate climate change impacts but because of their low resolution, downscaling methods are developed to provide data with high enough resolution for regional studies from GCM outputs. The performance of rainfall downscaling methods is commonly acceptable in preserving average characteristics, but they do not preserve the extreme event characteristics especially rainfall amount and distribution. In this study, a novel downscaling method called synoptic statistical downscaling model is proposed for daily precipitation downscaling with an emphasis on extreme event characteristics preservation. The proposed model is applied to a region located in central Iran. The results show that the developed model can downscale all percentiles of precipitation events with an acceptable performance and there is no assumption about the similarity of future rainfall data with the historical observations. The outputs of CCSM4 GCM for two representative concentration pathways (RCPs) of RCP4.5 and RCP8.5 are used to investigate the climate change impacts in the study region. The results show 40% and 30% increase in the number of extreme rainfall events under RCP4.5 and RCP8.5, respectively.


2008 ◽  
Vol 14 (7) ◽  
pp. 1600-1608 ◽  
Author(s):  
PHILIP A. FAY ◽  
DAWN M. KAUFMAN ◽  
JESSE B. NIPPERT ◽  
JONATHAN D. CARLISLE ◽  
CHRISTOPHER W. HARPER

2021 ◽  
Author(s):  
Orestis Stavrakidis-Zachou ◽  
Konstadia Lika ◽  
Panagiotis Anastasiadis ◽  
Nikos Papandroulakis

Abstract Finfish aquaculture in the Mediterranean Sea faces increasing challenges due to climate change while potential adaptation requires a robust assessment of the arising threats and opportunities. This paper presents an approach developed to investigate effects of climate drivers on Greek aquaculture, a representative Mediterranean country with a leading role in the sector. Using a farm level approach, Dynamic Energy Budget models for European seabass and meagre were developed and environmental forcing was used to simulate changes in production and farm profitability under IPCC scenarios RCP45 and RCP85. The effects of temperature and extreme weather events at the individual and farm level were considered along with that of husbandry parameters such as stocking timing, market size, and farm location (inshore, offshore) for nine regions. The simulations suggest that at the individual level fish may benefit from warmer temperatures in the future in terms of growth, thus reaching commercial sizes faster, while the husbandry parameters may have as large an effect on growth as the projected shifts in climatic cues. However, this benefit will be largely offset by the adverse effects of extreme weather events at the population level. Such events will be more frequent in the future and, depending on the intensity one assigns to them, they could cause losses in biomass and farm profits that range from mild to detrimental for the industry. Overall, these results provide quantification of some of the potential threats for an important aquaculture sector while suggesting possibilities to benefit from emerging opportunities. Therefore, they could contribute to improving the sector’s readiness for tackling important challenges in the future.


2020 ◽  
Vol 12 (10) ◽  
pp. 4319 ◽  
Author(s):  
Ngawang Chhogyel ◽  
Lalit Kumar ◽  
Yadunath Bajgai

Being a country in the Himalayas, Bhutan is highly prone to the vagaries of weather events that affect agricultural production and the subsequent livelihood of the people. To identify the main issues that affect crop production and the decisions of farmers, a survey was conducted in three different agro-ecosystems in Bhutan. Our key findings indicate that farming and the decisions of farmers were largely affected by different climatic and non-climatic factors. These were in descending order of importance: irrigation availability > farm labour > crop seasonality > crop damage (climatic) > land holding > crop damage (wildlife) > crop damage (diseases and pests). The most important consequences of climate change impacts were the drying of irrigation sources (4.35) and crop losses due to weather events (4.10), whereas land fallowing, the occurrence of flood and soil erosion, weed pressure and changes in cropping pattern (with mean ratings of 2.53–3.03) experienced lesser consequences. The extreme weather events, such as untimely rains, drought and windstorms, were rated as the ‘most common’ to ‘common’ occurrences, thus inflicting a crop loss of 1–19%. These confirm our hearsay knowledge that extreme weather events have major consequences on irrigation water, which is said to be either drying or getting smaller in comparison to the past. Therefore, Bhutan must step up its on-ground farmer-support system towards improving the country’s food production, whilst embracing climate smart farm technologies for adapting to the impacts of change.


2019 ◽  
Vol 32 (2) ◽  
pp. 244-266
Author(s):  
Edimilson Costa Lucas ◽  
Wesley Mendes-Da-Silva ◽  
Gustavo Silva Araujo

Purpose Managing the risks associated to world food production is an important challenge for governments. A range of factors, among them extreme weather events, has threatened food production in recent years. The purpose of this paper is to analyse the impact of extreme rainfall events on the food industry in Brazil, a prominent player in this industry. Design/methodology/approach The authors use the AR-GARCH-GPD hybrid methodology to identify whether extreme rainfall affects the stock price of food companies. To do so, the authors collected the daily closing price of the 16 food industry companies listed on the Brazilian stock exchange (B3), in January 2015. Findings The results indicate that these events have a significant impact on stock returns: on more than half of the days immediately following the heavy rain that fell between 28 February 2005 and 30 December 2014, returns were significantly low, leading to average daily losses of 1.97 per cent. These results point to the relevance of the need for instruments to hedge against weather risk, particularly in the food industry. Originality/value Given that extreme weather events have been occurring more and more frequently, financial literature has documented attempts at assessing the economic impacts of weather changes. There is little research, however, into assessing the impacts of these events at corporate level.


2013 ◽  
Vol 864-867 ◽  
pp. 2073-2079
Author(s):  
Yao Yao Weng ◽  
Zi Long Liu

Climate and precipitation of city has undergone great changes, waterlogging and drought events caused by extreme weather events is seriously affecting the normal operation of the city and people's production and life. This paper analyzes the rainfall patterns of Beijing in recent years on the basis of rainfall data nearly 68 years, including changes of all levels rainfall, extreme rainfall event occurrence and changes in short duration of heavy rainfall events. The results show that The possibility of short duration extreme rainfall increased nearly a decade.This provided an effective basis for design of Beijing rainfall exclusion and waterlogging disaster.


2020 ◽  
Vol 25 (5) ◽  
pp. 05020005
Author(s):  
Taesam Lee ◽  
Chanyoung Son ◽  
Mieun Kim ◽  
Sangeun Lee ◽  
Sunkwon Yoon

2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Anil Kumar Roy

Developing countries are highly vulnerable to climate change [1,2]. They have less coping capacity to deal with its negative impacts. India is one of the most vulnerable countries in South Asia. It urgently requires adaptation and mitigation measures to cope with possible impacts arising from extreme weather events due to climate change. Indian cities, particularly the coastal ones, are at a comparatively greater risk as their population is likely to grow rapidly and may reach 500 million over the next 50 years [3]. The assessment of climate change impacts and adaptability both at the macro region and micro levels is necessary to create effective mitigation policies


Sign in / Sign up

Export Citation Format

Share Document