Temperature and precipitation projections for Poland based on downscaled EuroCORDEX ensemble

Author(s):  
Joanna Struzewska ◽  
Maciej Jefimow ◽  
Paulina Jagiełło ◽  
Maria Kłeczek ◽  
Anahita Sattari ◽  
...  

<p>Regional climate projections are necessary to assess possible changes in the exposure and risk to allow planning the adaptation strategies.</p><p>Projections of temperature and precipitation trends were developed using a consistent methodology and homogeneous datasets to address the needs of up-to-date climate change scenarios for Poland.</p><p>The Euro-Cordex results with the resolution of 0.11deg (about 12.5km) for RCP4.5 and RCP8.5 were downscaled based on various historical gridded datasets (EOBS, ERA5, UERRA and data from IMWM).</p><p>Ensemble analysis was undertaken to assess the projection uncertainty and ensemble mean were calculated for base parameters (daily average, minimum, and maximum temperature and daily precipitation sum) as well as for the number of climate indices.</p><p>We will present spatial and temporal variability of selected climate indices over Poland for subsequent decades. Increase of the annual average temperature is due to the rise in the number of hot days and the reduction of the number of frost days. All temperature indices are characterized by statistically significant trends, strongest for RCP8.5. The most pronounced changes in the frequency and amount of precipitation occur in the north-east of Poland. The total number of days with precipitation increases slightly. The increase in the annual rainfall is due to the increase in the number of days with extreme precipitation.</p><p>Results are presented via an interactive web portal. Further analysis includes the development of projection for solar radiation, wind speed, humidity and snow cover.</p>

2021 ◽  
Author(s):  
Tugba Ozturk ◽  
Dominic Matte ◽  
Jens Hesselbjerg Christensen

<div><span>In this work, we investigate the scalability of wet and dry persisting conditions over the European domain. For this aim, we have used the EURO-CORDEX ensemble of regional climate projections at 0.11° grid-mesh for daily minimum and maximum temperature and precipitation to analyze future changes in relation with extreme weather events addressing climate warming targets of 1°C, 2°C and 3°C, respectively. A simple scaling with the annual mean global mean temperature change modeled by the driving GCM is applied. We also identify the emergence of the scaled patterns of minimum and maximum temperatures and of wet and dry persisting conditions in relation with certain extreme weather indices. In particular we focus on pattern scaling of extreme temperatures and precipitation over sub-regions over the Mediterranean basin since this region has been identified as a climate change hot spot.</span></div>


2014 ◽  
Vol 11 (10) ◽  
pp. 11945-11986 ◽  
Author(s):  
C. Onyutha ◽  
P. Willems

Abstract. Spatio-temporal variability in annual and seasonal rainfall totals were assessed at 37 locations of the Nile Basin in Africa using quantile perturbation method. To get insight into the spatial difference in rainfall statistics, the stations were grouped based on the pattern of the long-term mean of monthly rainfall and that of temporal variability. To find the origin of the driving forces for the temporal variability in rainfall, correlation analyses were carried out using global monthly sea level pressure and surface temperature. Further investigations to support the obtained correlations were made using a total of 10 climate indices. It was possible to obtain 3 groups of stations; those within the equatorial region (A), Sudan and Ethiopia (B), and Egypt (C). For group A, annual rainfall was found to be below (above) the reference during the late 1940s to 1950s (1960s to mid 1980s). Conversely for groups B and C, the period 1930s to late 1950s (1960s to 1980s) was characterized by anomalies being above (below) the reference. For group A, significant linkages were found to Niño 3, Niño 3.4 and the North Atlantic and Indian Ocean drivers. Correlations of annual rainfall of group A with Pacific Ocean-related climate indices were inconclusive. With respect to the main wet seasons, the June to September rainfall of group B has strong connection to the influence from the Indian Ocean. For the March to May (October to February) rainfall of group A (C), possible links to the Atlantic and Indian Oceans were found.


2021 ◽  
Vol 168 (1-2) ◽  
Author(s):  
Dipesh Chapagain ◽  
Sanita Dhaubanjar ◽  
Luna Bharati

AbstractExisting climate projections and impact assessments in Nepal only consider a limited number of generic climate indices such as means. Few studies have explored climate extremes and their sectoral implications. This study evaluates future scenarios of extreme climate indices from the list of the Expert Team on Sector-specific Climate Indices (ET-SCI) and their sectoral implications in the Karnali Basin in western Nepal. First, future projections of 26 climate indices relevant to six climate-sensitive sectors in Karnali are made for the near (2021–2045), mid (2046–2070), and far (2071–2095) future for low- and high-emission scenarios (RCP4.5 and RCP8.5, respectively) using bias-corrected ensembles of 19 regional climate models from the COordinated Regional Downscaling EXperiment for South Asia (CORDEX-SA). Second, a qualitative analysis based on expert interviews and a literature review on the impact of the projected climate extremes on the climate-sensitive sectors is undertaken. Both the temperature and precipitation patterns are projected to deviate significantly from the historical reference already from the near future with increased occurrences of extreme events. Winter in the highlands is expected to become warmer and dryer. The hot and wet tropical summer in the lowlands will become hotter with longer warm spells and fewer cold days. Low-intensity precipitation events will decline, but the magnitude and frequency of extreme precipitation events will increase. The compounding effects of the increase in extreme temperature and precipitation events will have largely negative implications for the six climate-sensitive sectors considered here.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Avit Kumar Bhowmik

Two climate indices, TXx and PRCPTOT, representing the summer maximum temperature and annual total monsoon precipitation, respectively, in Bangladesh were computed. The temperature and precipitation measurements from 34 meteorological stations during the temporal extent of 1948–2007 were applied for indices’ computation under thorough quality control. The spatial trends of the indices were analyzed by applying two-dimensional least square approach along latitudes and longitudes of the observation points. The temporal patterns of the spatial trends were identified by temporally interpolating them applying thin plate smoothing spline method. The analyses of TXx identified regional scale spatial trends in the east-west and south-north directions, which were increasing between 1948 and 1980s. After the 1980s the spatial trends started decreasing, and after 2000 the spatial trend along the south-north changed its direction to the north-south and continued until present. The analyses of the PRCPTOT identified spatial trends in the west-east and north-south directions, which were decreasing between 1948 and 1980s and thereafter increasing until present. About half of the spatial trends were significant in F-statistics at or more than 90% confidence level. Thus, the obtained results indicated a significant climatic shift within the regional scale of the country during the study period.


2021 ◽  
Author(s):  
Dipesh Chapagain ◽  
Sanita Dhaubanjar ◽  
Luna Bharati

Abstract Existing climate projections and impact assessments in Nepal only consider a limited number of generic climate indices such as means. Few studies have explored climate extremes and their sectoral implications. This study evaluates future scenarios of extreme climate indices from the list of Expert Team on Sector-specific Climate Indices (ET-SCI) and their sectoral implications in the Karnali Basin in western Nepal. First, future projections of 26 climate indices relevant to six climate-sensitive sectors in Karnali were made for the near (2021–2045), mid (2046–2070), and far (2071–2095) future for low- and high-emission scenarios (RCP4.5 and RCP8.5, respectively) using bias-corrected ensembles of 19 regional climate models from the COordinated Regional Downscaling EXperiment for South Asia (CORDEX-SA). Second, a qualitative analysis based on expert interviews and a literature review on the impact of the projected climate extremes on the climate-sensitive sectors was undertaken. Both the temperature and precipitation patterns are projected to deviate significantly from the historical reference already from the near future with increased occurrences of extreme events. Winter in the highlands is expected to become warmer and dryer. The hot and wet tropical summer in the lowlands will become hotter with longer warm spells and fewer cold days. Low-intensity precipitation events will decline, but the magnitude and frequency of extreme precipitation events will increase. The compounding effects of the increase in extreme temperature and precipitation events will have largely negative implications for the six climate-sensitive sectors considered here.


2014 ◽  
Vol 53 (9) ◽  
pp. 2148-2162 ◽  
Author(s):  
Bárbara Tencer ◽  
Andrew Weaver ◽  
Francis Zwiers

AbstractThe occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.


2013 ◽  
Vol 13 (2) ◽  
pp. 263-277 ◽  
Author(s):  
C. Dobler ◽  
G. Bürger ◽  
J. Stötter

Abstract. The objectives of the present investigation are (i) to study the effects of climate change on precipitation extremes and (ii) to assess the uncertainty in the climate projections. The investigation is performed on the Lech catchment, located in the Northern Limestone Alps. In order to estimate the uncertainty in the climate projections, two statistical downscaling models as well as a number of global and regional climate models were considered. The downscaling models applied are the Expanded Downscaling (XDS) technique and the Long Ashton Research Station Weather Generator (LARS-WG). The XDS model, which is driven by analyzed or simulated large-scale synoptic fields, has been calibrated using ECMWF-interim reanalysis data and local station data. LARS-WG is controlled through stochastic parameters representing local precipitation variability, which are calibrated from station data only. Changes in precipitation mean and variability as simulated by climate models were then used to perturb the parameters of LARS-WG in order to generate climate change scenarios. In our study we use climate simulations based on the A1B emission scenario. The results show that both downscaling models perform well in reproducing observed precipitation extremes. In general, the results demonstrate that the projections are highly variable. The choice of both the GCM and the downscaling method are found to be essential sources of uncertainty. For spring and autumn, a slight tendency toward an increase in the intensity of future precipitation extremes is obtained, as a number of simulations show statistically significant increases in the intensity of 90th and 99th percentiles of precipitation on wet days as well as the 5- and 20-yr return values.


2015 ◽  
Vol 28 (18) ◽  
pp. 7327-7346 ◽  
Author(s):  
Xiuquan Wang ◽  
Guohe Huang ◽  
Jinliang Liu ◽  
Zhong Li ◽  
Shan Zhao

Abstract In this study, high-resolution climate projections over Ontario, Canada, are developed through an ensemble modeling approach to provide reliable and ready-to-use climate scenarios for assessing plausible effects of future climatic changes at local scales. The Providing Regional Climates for Impacts Studies (PRECIS) regional modeling system is adopted to conduct ensemble simulations in a continuous run from 1950 to 2099, driven by the boundary conditions from a HadCM3-based perturbed physics ensemble. Simulations of temperature and precipitation for the baseline period are first compared to the observed values to validate the performance of the ensemble in capturing the current climatology over Ontario. Future projections for the 2030s, 2050s, and 2080s are then analyzed to help understand plausible changes in its local climate in response to global warming. The analysis indicates that there is likely to be an obvious warming trend with time over the entire province. The increase in average temperature is likely to be varying within [2.6, 2.7]°C in the 2030s, [4.0, 4.7]°C in the 2050s, and [5.9, 7.4]°C in the 2080s. Likewise, the annual total precipitation is projected to increase by [4.5, 7.1]% in the 2030s, [4.6, 10.2]% in the 2050s, and [3.2, 17.5]% in the 2080s. Furthermore, projections of rainfall intensity–duration–frequency (IDF) curves are developed to help understand the effects of global warming on extreme precipitation events. The results suggest that there is likely to be an overall increase in the intensity of rainfall storms. Finally, a data portal named Ontario Climate Change Data Portal (CCDP) is developed to ensure decision-makers and impact researchers have easy and intuitive access to the refined regional climate change scenarios.


2013 ◽  
Vol 14 (4) ◽  
pp. 407-421 ◽  

The potential regional future changes in seasonal (winter and summer) temperature and precipitation are assessed for the greater area of Greece over the 21st century, under A2, A1B and B2 future emission scenarios of IPCC. Totally twenty-two simulations from various regional climate models (RCMs) were assessed; fourteen of them with a spatial grid resolution of 50km for the period 2071-2100 under A2 (9 simulations) and B2 (5 simulations) scenarios and eight of them with an even finer resolution of 25km under A1B scenario for both 2021-2050 and 2071-2100 time periods. The future changes in temperature and precipitation were calculated with respect to the control period (1961-1990). All the models estimated warmer and dryer conditions over the study area. The warming is more intense during the summer months, with the changes being larger in the continental than in the marine area of Greece. In terms of precipitation, the simulations of the RCMs estimate a decrease up to -60% (A2 scenario). Finally it is shown that the changes in the atmospheric circulation over Europe play a key role in the changes of the future precipitation and temperature characteristics over the domain of study in a consistent way for the different emission scenarios.


Author(s):  
Sudeep Pokhrel ◽  
Saraswati Thapa

Water from snow-melt is crucial to provide ecosystem services in downstream of the Himalayas. To study the fate of snow hydrology, an integrated modeling system has been developed coupling Statistical Downscaling Model (SDSM) outputs with Snowmelt Runoff Model (SRM) in the Dudhkoshi Basin, Nepal. The SRM model is well-calibrated in 2011 and validated in 2012 and 2014 using MODIS satellite data. The annual average observed and simulated discharges for the calibration year are 177.89 m3 /s and 181.47 m3 /s respectively. To assess future climate projections for the periods 2020s, 2050s, and 2080s, the SDSM model is used for downscaling precipitation, maximum temperature, and minimum temperature from the Canadian GCM model (CanESM2) under three different scenarios RCP2.6, RCP4.5 and RCP8.5. All considered scenarios are significant in predicting increasing trends of maximumminimum temperature and precipitation and the storehouse of freshwater in the mountains is expected to deplete rapidly if global warming continues.


Sign in / Sign up

Export Citation Format

Share Document