Predictable weather regimes at the S2S time scale

Author(s):  
Nicola Cortesi ◽  
Veronica Torralba ◽  
Llorenç Lledó ◽  
Andrea Manrique-Suñén ◽  
Nube Gonzalez-Reviriego ◽  
...  

<p>State-of-the-art Subseasonal-to-Seasonal (S2S) forecast systems correctly simulate the main properties of weather regimes, like their spatial structures and their average frequencies. However, they are still unable to skillfully predict the observed frequencies of occurrence of weather regimes after the first ten days or so. Such a limitation severely restrict their application to develop climate service products, for example to forecast events with a strong impact on society, such as droughts, heat waves or cold spells.<br><br>This work describes two novel corrections that can be easily applied to any weather regime classification, to significantly enhance the S2S predictability of the frequencies of the weather regimes. The first one is based on the idea of weighting the daily observed anomaly fields of the variable used to cluster the atmospheric flow by the Anomaly Correlation Coefficient (ACC) of the same variable, just before clustering it. In this way, the clustering algorithm gives more importance to the areas where the forecast system is better in predicting the circulation variable. Thus, it is forced to generate the most predictable regimes. The second correction consists in the ACC weighting of the daily forecasted anomalies before the assignation of the daily fields to the observed regimes, to give more importance to the grid points where the forecast system has more skill. Hence, the forecasted time series of the regimes is more similar to the observed one.</p><p>Two sets of four regimes each were validated, one defined by <em>k-means</em> clustering of SLP from NCEP reanalysis over the Euro-Atlantic region during lasts 40-years (1979-2018) for October to March, and another for April to September. Forecasts proceed from the 2018 version of the Monthly Forecast System developed by the European Centre for Medium-Range Weather Forecasts (ECMWF-MFS). Predictability was measured in cross-validation by the Pearson correlations between the forecasted and observed weekly frequencies of occurrence of the regimes, for each of the 52 weekly start dates of the year separately and for a 20-years hindcast period (1998-2017).<br><br>Results show that with both corrections described above, Pearson correlations increase up to r = +0.5, depending on the start date and forecast time. Average increase over all start dates is of r = +0.2 at forecast days 12-18 and r = +0.3 at forecast days 19-25 and 26-32. The gain is spread quite evenly along the start dates of the year. <br><br>Beyond the Euro-Atlantic region, these two corrections can be easily transferred to any area of the world. They may be employed to correct seasonal predictions of weather regimes too (results in progress). Besides, their application is straightforward and provides a significant skill gain at a negligible computational cost for potentially all S2S forecast systems and regime classifications. We foresee that they might also benefit forecasts of atmospheric teleconnections. For all these reasons, we warmly recommend the S2S community to take advantage of this 'low-hanging fruit'.<br> </p>

2021 ◽  
Author(s):  
Nicola Cortesi ◽  
Verónica Torralba ◽  
Llorenó Lledó ◽  
Andrea Manrique-Suñén ◽  
Nube Gonzalez-Reviriego ◽  
...  

AbstractIt is often assumed that weather regimes adequately characterize atmospheric circulation variability. However, regime classifications spanning many months and with a low number of regimes may not satisfy this assumption. The first aim of this study is to test such hypothesis for the Euro-Atlantic region. The second one is to extend the assessment of sub-seasonal forecast skill in predicting the frequencies of occurrence of the regimes beyond the winter season. Two regime classifications of four regimes each were obtained from sea level pressure anomalies clustered from October to March and from April to September respectively. Their spatial patterns were compared with those representing the annual cycle. Results highlight that the two regime classifications are able to reproduce most part of the patterns of the annual cycle, except during the transition weeks between the two periods, when patterns of the annual cycle resembling Atlantic Low regime are not also observed in any of the two classifications. Forecast skill of Atlantic Low was found to be similar to that of NAO+, the regime replacing Atlantic Low in the two classifications. Thus, although clustering yearly circulation data in two periods of 6 months each introduces a few deviations from the annual cycle of the regime patterns, it does not negatively affect sub-seasonal forecast skill. Beyond the winter season and the first ten forecast days, sub-seasonal forecasts of ECMWF are still able to achieve weekly frequency correlations of r = 0.5 for some regimes and start dates, including summer ones. ECMWF forecasts beat climatological forecasts in case of long-lasting regime events, and when measured by the fair continuous ranked probability skill score, but not when measured by the Brier skill score. Thus, more efforts have to be done yet in order to achieve minimum skill necessary to develop forecast products based on weather regimes outside winter season.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 891
Author(s):  
Aurea Grané ◽  
Alpha A. Sow-Barry

This work provides a procedure with which to construct and visualize profiles, i.e., groups of individuals with similar characteristics, for weighted and mixed data by combining two classical multivariate techniques, multidimensional scaling (MDS) and the k-prototypes clustering algorithm. The well-known drawback of classical MDS in large datasets is circumvented by selecting a small random sample of the dataset, whose individuals are clustered by means of an adapted version of the k-prototypes algorithm and mapped via classical MDS. Gower’s interpolation formula is used to project remaining individuals onto the previous configuration. In all the process, Gower’s distance is used to measure the proximity between individuals. The methodology is illustrated on a real dataset, obtained from the Survey of Health, Ageing and Retirement in Europe (SHARE), which was carried out in 19 countries and represents over 124 million aged individuals in Europe. The performance of the method was evaluated through a simulation study, whose results point out that the new proposal solves the high computational cost of the classical MDS with low error.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
R. Maffulli ◽  
L. He ◽  
P. Stein ◽  
G. Marinescu

The emerging renewable energy market calls for more advanced prediction tools for turbine transient operations in fast startup/shutdown cycles. Reliable numerical analysis of such transient cycles is complicated by the disparity in time scales of the thermal responses in fluid and solid domains. Obtaining fully coupled time-accurate unsteady conjugate heat transfer (CHT) results under these conditions would require to march in both domains using the time-step dictated by the fluid domain: typically, several orders of magnitude smaller than the one required by the solid. This requirement has strong impact on the computational cost of the simulation as well as being potentially detrimental to the accuracy of the solution due to accumulation of round-off errors in the solid. A novel loosely coupled CHT methodology has been recently proposed, and successfully applied to both natural and forced convection cases that remove these requirements through a source-term based modeling (STM) approach of the physical time derivative terms in the relevant equations. The method has been shown to be numerically stable for very large time steps with adequate accuracy. The present effort is aimed at further exploiting the potential of the methodology through a new adaptive time stepping approach. The proposed method allows for automatic time-step adjustment based on estimating the magnitude of the truncation error of the time discretization. The developed automatic time stepping strategy is applied to natural convection cases under long (2000 s) transients: relevant to the prediction of turbine thermal loads during fast startups/shutdowns. The results of the method are compared with fully coupled unsteady simulations showing comparable accuracy with a significant reduction of the computational costs.


2022 ◽  
Author(s):  
Valerio Lembo ◽  
Federico Fabiano ◽  
Vera Melinda Galfi ◽  
Rune Graversen ◽  
Valerio Lucarini ◽  
...  

Abstract. The extratropical meridional energy transport in the atmosphere is fundamentally intermittent in nature, having extremes large enough to affect the net seasonal transport. Here, we investigate how these extreme transports are associated with the dynamics of the atmosphere at multiple scales, from planetary to synoptic. We use ERA5 reanalysis data to perform a wavenumber decomposition of meridional energy transport in the Northern Hemisphere mid-latitudes during winter and summer. We then relate extreme transport events to atmospheric circulation anomalies and dominant weather regimes, identified by clustering 500 hPa geopotential height fields. In general, planetary-scale waves determine the strength and meridional position of the synoptic-scale baroclinic activity with their phase and amplitude, but important differences emerge between seasons. During winter, large wavenumbers (k = 2 − 3) are key drivers of the meridional energy transport extremes, and planetary and synoptic-scale transport extremes virtually never co-occur. In summer, extremes are associated with higher wavenumbers (k = 4 − 6), identified as synoptic-scale motions. We link these waves and the transport extremes to recent results on exceptionally strong and persistent co-occurring summertime heat waves across the Northern Hemisphere mid-latitudes. We show that these events are typical, in terms of dominant regime patterns associated with extremely strong meridional energy transports.


Author(s):  
Andrea Cassinelli ◽  
Francesco Montomoli ◽  
Paolo Adami ◽  
Spencer J. Sherwin

The high order spectral/hp element methods implemented in the software framework Nektar++ are investigated for scale-resolving simulations of LPT profiles. There is a growing demand for high fidelity methods for turbomachinery to move towards numerical “experiments”. The study contributes at building best practices for the use of emerging high fidelity spectral element methods in turbomachinery predictions, with focus on the numerical details that are specific of these classes of methods. For this reason, the T106A cascade is used as a base reference application because of availability of data from previous investigations. The effects of polynomial order (p-refinement), spanwise domain extent and spanwise Fourier planes are considered, looking at flow statistics, convergence and sensitivity of the results. The performance of the high order spectral/hp element method is also assessed through validation against experimental data at moderately high Reynolds number. Thanks to the reduced computational cost, the proposed methods will have a strong impact in turbomachinery, paving the way to its use for design purposes and also allowing for a deeper understanding of the flow physics.


2020 ◽  
Author(s):  
Stefanie Gubler ◽  
Sophie Fukutome ◽  
Christoph Frei

<p>Extreme high temperatures have a strong impact on human well-being. In Switzerland, for instance, mortality has been shown to increase during strong heat waves (e.g., Ragettli et al., 2017) such as those that occurred in 2003, 2015, or 2018. Knowledge on the recurrence of such heat waves is therefore important, but conventional analysis of observational series is challenged by their rare occurrence (limited sampling), long-term trends, and strong seasonality (non-stationarity). This work presents a methodology, to derive reliable recurrence estimates of extreme maximum and minimum temperature events, taking account of gradual trends and seasonality in the data.</p><p>Temperature in Switzerland undergoes pronounced seasonal fluctuations, both in mean value and variance. In addition, a significant warming occurred over the last decades. To derive robust estimates on the rarity of a given extreme temperature event, it is important that these non-stationarities are formally modelled. Our modelling assumes that observed daily temperatures at stations are a superposition of a gradual, non-linear trend and residuals from a skewed T-distribution. The parameters of that distribution are assumed to vary over the year as second order harmonic functions. The model parameters are estimated using maximum likelihood. Thanks to this modelling, the existing daily temperature data can be transformed into a standard normal distribution, and the probability of an event can thus be assessed with respect to the climate at the time of measurement (year, calendar day).</p><p>With this methodology in hand, we analyze heat waves of the past, focusing on extreme temperatures at the beginning of summer when mortality risks are higher (Ragettli et al, 2017). We show how the risk of extreme heat has changed in the past, and how very rare events have become much more frequent in the present climate.</p><p> </p><p>Ragettli, M., Vicedo-Cabrero, A. M., Schindler, C., and M. Röösli (2017): Exploring the association between heat and mortality in Switzerland between 1995 and 2013, Environmental Research, 158, 703-709, https://doi.org/10.1016/j.envres.2017.07.021.</p>


Author(s):  
Hui Du ◽  
Yuping Wang ◽  
Xiaopan Dong

Clustering is a popular and effective method for image segmentation. However, existing cluster methods often suffer the following problems: (1) Need a huge space and a lot of computation when the input data are large. (2) Need to assign some parameters (e.g. number of clusters) in advance which will affect the clustering results greatly. To save the space and computation, reduce the sensitivity of the parameters, and improve the effectiveness and efficiency of the clustering algorithms, we construct a new clustering algorithm for image segmentation. The new algorithm consists of two phases: coarsening clustering and exact clustering. First, we use Affinity Propagation (AP) algorithm for coarsening. Specifically, in order to save the space and computational cost, we only compute the similarity between each point and its t nearest neighbors, and get a condensed similarity matrix (with only t columns, where t << N and N is the number of data points). Second, to further improve the efficiency and effectiveness of the proposed algorithm, the Self-tuning Spectral Clustering (SSC) is used to the resulted points (the representative points gotten in the first phase) to do the exact clustering. As a result, the proposed algorithm can quickly and precisely realize the clustering for texture image segmentation. The experimental results show that the proposed algorithm is more efficient than the compared algorithms FCM, K-means and SOM.


Author(s):  
Yang Zhang ◽  
Lee D. Han ◽  
Hyun Kim

Incident hotspots are used as a direct indicator of the needs for road maintenance and infrastructure upgrade, and an important reference for investment location decisions. Previous incident hotspot identification methods are all region based, ignoring the underlying road network constraints. We first demonstrate how region based hotspot detection may be inaccurate. We then present Dijkstra’s-DBSCAN, a new network based density clustering algorithm specifically for traffic incidents which combines a modified Dijkstra’s shortest path algorithm with DBSCAN (density based spatial clustering of applications with noise). The modified Dijkstra’s algorithm, instead of returning the shortest path from a source to a target as the original algorithm does, returns a set of nodes (incidents) that are within a requested distance when traveling from the source. By retrieving the directly reachable neighbors using this modified Dijkstra’s algorithm, DBSCAN gains its awareness of network connections and measures distance more practically. It avoids clustering incidents that are close but not connected. The new approach extracts hazardous lanes instead of regions, and so is a much more precise approach for incident management purposes; it reduces the [Formula: see text] computational cost to [Formula: see text], and can process the entire U.S. network in seconds; it has routing flexibility and can extract clusters of any shape and connections; it is parallellable and can utilize distributed computing resources. Our experiments verified the new methodology’s capability of supporting safety management on a complicated surface street configuration. It also works for customized lane configuration, such as freeways, freeway junctions, interchanges, roundabouts, and other complex combinations.


2008 ◽  
Vol 34 (4) ◽  
pp. 527-546 ◽  
Author(s):  
Virginie Guemas ◽  
David Salas-Mélia ◽  
Masa Kageyama ◽  
Hervé Giordani ◽  
Aurore Voldoire ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Oludayo O. Olugbara ◽  
Emmanuel Adetiba ◽  
Stanley A. Oyewole

Image segmentation is an important problem that has received significant attention in the literature. Over the last few decades, a lot of algorithms were developed to solve image segmentation problem; prominent amongst these are the thresholding algorithms. However, the computational time complexity of thresholding exponentially increases with increasing number of desired thresholds. A wealth of alternative algorithms, notably those based on particle swarm optimization and evolutionary metaheuristics, were proposed to tackle the intrinsic challenges of thresholding. In codicil, clustering based algorithms were developed as multidimensional extensions of thresholding. While these algorithms have demonstrated successful results for fewer thresholds, their computational costs for a large number of thresholds are still a limiting factor. We propose a new clustering algorithm based on linear partitioning of the pixel intensity set and between-cluster variance criterion function for multilevel image segmentation. The results of testing the proposed algorithm on real images from Berkeley Segmentation Dataset and Benchmark show that the algorithm is comparable with state-of-the-art multilevel segmentation algorithms and consistently produces high quality results. The attractive properties of the algorithm are its simplicity, generalization to a large number of clusters, and computational cost effectiveness.


Sign in / Sign up

Export Citation Format

Share Document