Biological consequences of the spatial-differentiated level of the 131I accumulation in sheep thyroid after Chernobyl accident

Author(s):  
Elvira Denisova ◽  
Alexander Zenkin ◽  
Alexey Snegirev ◽  
Yuri Kurachenko ◽  
Gennady Kozmin ◽  
...  

<p>The aim of this work is to study the <sup>131</sup>I biological effects on sheep at different concentrations of stable iodine in the diet. The problem of the absorbed dose estimation in the sheep thyroid gland (TG) after a radiation accident at the Chernobyl NPP in the conditions of natural micronutrient deficiency is considered. To determine the <sup>131</sup>I critical dose in the sheep TG, leading to its dysfunction and subsequent destruction, complex laboratory studies were performed to refine the compartmental model parameters, based on reliable experimental and theoretical data. Modern technologies are used to model the TG area. The solution of the radiation transport equation is performed by the Monte Carlo technique, which takes into account both the γ - and β-radiation of the <sup>131</sup>I immanent source and the contribution of all secondary radiations.</p><p>The studies were carried out on 64 sheep, divided into 10 groups based on the general clinical condition and body weight. The first 5 groups included animals from the Gomel region (32 sheep, iodine content in the daily diet was 0.08 mg/kg ), in the 6–10th groups (32 sheep; 0.43 mg/kg ) – from the Vladimir region. Tests for iodine content in feed and water were performed in the Belarusian Institute of Experimental Veterinary Medicine, Minsk, 1989). For sheep 1–3rd  , 6–8th  groups (9 sheep in the group) once peroral the <sup>131</sup>I was injected with activity: for the 1st  and 6th  groups  3 µCi, for the 2nd  and 7th 15 µCi, from the 3rd  and 8th  – 72 µCi  per capita. The surviving sheep were vaccinated against Rift Valley fever and then exposed to infection with an epizootic strain of the virus of this disease.</p><p>The main theoretical result is the conversion factor of the <sup>131</sup>I activity to the average dose rate in thyroid. The main practical result is the evaluation of the lower limit of absorbed dose in the TG (~ 300 Gy), which leads to its destruction. Animals with a reduced content of stable iodine in the diet were characterized by an increased number of cells in venous blood, reduced levels of thyroxine in the serum, altered structure and functional activity of the thyroid and liver. In animals with low levels of iodine nutrition, a large capture of the isotope by the TG was noted, which provided larger (2–5 times) doses. In sheep with iodine deficiency, a decrease in the number of leukocytes, thyroxine levels; survival is reduced. After the <sup>131</sup>I intake, sheep developed a radiation-induced immunodeficiency, but the main mechanisms of the infectious process in animals remained: post-vaccination reactions proceeded without complications, were characterized by antibody formation and immune development.</p>

Author(s):  
Ю. Кураченко ◽  
Yu. Kurachenko ◽  
Н. Санжарова ◽  
N. Sanzharova ◽  
Г. Козьмин ◽  
...  

Purpose: This work aims first to improve the reliability of absorbed dose calculation in critical organs of cattle during internal irradiation immediately after radiation accidents by a) improving the compartmental model of radionuclide metabolism in animal body; b) the use of precision computing technologies for modeling as the domain, and the actual radiation transport. In addition, the aim of the work is to determine the agreed values of the 131I critical dose in the cattle thyroid, leading to serious gland dysfunction and its follow-up destruction. Material and methods: To achieve aforecited goals, comprehensive studies were carried out to specify the parameters of the compartmental model, based on reliable experimental and theoretical data. Voxel technologies were applied for modeling the subject domain (thyroid gland and its environment). Finally, to solve the 131I radiation transport equation, the Monte Carlo code was applied, which takes into account the contribution of gamma and beta radiation source, and the contribution of the entire chain of secondary radiations in the dose calculation, up to the total energy dissipation. Results: As the main theoretical result, it is necessary to emphasize the conversion factor from the 131I activity, distributed uniformly in volume of the thyroid gland, to the average dose rate in the gland (Bq × Gy/s). This factor was calculated for both cows and calves in the selected domain configuration and thyroid morphology. The main practical result is a reliable estimation the lower bound of the absorbed dose in the thyroid, which in a short time leads to its destruction under internal 131I irradiation: ~300 Gy. Conclusion: Usage a compartmental model of the 131I metabolism with biokinetic parameters, received on the basis of reliable experimental data, and precise models of both the subject area and radiation transport for evaluation the dose in the cattle thyroid after the radiation accident allowed to obtain reliable values of the thyroid dose, adducting to its destruction at short notice.


1987 ◽  
Vol 52 (8) ◽  
pp. 1888-1904
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

A theoretical model is described of the mean two-dimensional flow of homogeneous charge in a flat-bottomed cylindrical tank with radial baffles and six-blade turbine disc impeller. The model starts from the concept of vorticity transport in the bulk of vortex liquid flow through the mechanism of eddy diffusion characterized by a constant value of turbulent (eddy) viscosity. The result of solution of the equation which is analogous to the Stokes simplification of equations of motion for creeping flow is the description of field of the stream function and of the axial and radial velocity components of mean flow in the whole charge. The results of modelling are compared with the experimental and theoretical data published by different authors, a good qualitative and quantitative agreement being stated. Advantage of the model proposed is a very simple schematization of the system volume necessary to introduce the boundary conditions (only the parts above the impeller plane of symmetry and below it are distinguished), the explicit character of the model with respect to the model parameters (model lucidity, low demands on the capacity of computer), and, in the end, the possibility to modify the given model by changing boundary conditions even for another agitating set-up with radially-axial character of flow.


2019 ◽  
Vol 26 (2) ◽  
pp. 517-527
Author(s):  
Stewart Midgley ◽  
Nanette Schleich ◽  
Alex Merchant ◽  
Andrew Stevenson

The dose length product (DLP) method for medical computed tomography (CT) dosimetry is applied on the Australian Synchrotron Imaging and Medical Beamline (IMBL). Beam quality is assessed from copper transmission measurements using image receptors, finding near 100% (20 keV), 3.3% (25 keV) and 0.5% (30–40 keV) relative contributions from third-harmonic radiation. The flat-panel-array medical image receptor is found to have a non-linear dose response curve. The amount of radiation delivered during an axial CT scan is measured as the dose in air alone, and inside cylindrical PMMA phantoms with diameters 35–160 mm for mono-energetic radiation 25–100 keV. The radiation output rate for the IMBL is comparable with that used for medical CT. Results are presented as the ratios of CT dose indices (CTDI) inside phantoms to in air with no phantom. Ratios are compared for the IMBL against medical CT where bow-tie filters shape the beam profile to reduce the absorbed dose to surface organs. CTDI ratios scale measurements in air to estimate the volumetric CTDI representing the average dose per unit length, and the dose length product representing the absorbed dose to the scanned volume. Medical CT dose calculators use the DLP, beam quality, axial collimation and helical pitch to estimate organ doses and the effective dose. The effective dose per unit DLP for medical CT is presented as a function of body region, beam energy and sample sizes from neonate to adult.


2010 ◽  
Vol 58 (spe4) ◽  
pp. 25-32 ◽  
Author(s):  
Wagner de S. Pereira ◽  
Alphonse Kelecom ◽  
Delcy de A. Py Júnior

A methodology was developed for converting the activity concentration of radionuclides (Bq kg-1) into absorbed dose rate (Gy y-1), aiming an approach to environmental radioprotection based on the concept of standard dose limit. The model considers only the internal absorbed dose rate. This methodology was applied to the cubera snapper fish (Lutjanus cyanopterus, Cuvier, 1828) caught off the coast of Ceará. The natural radionuclides considered were uranium-238, radium-226, lead-210, thorium-232 and radium-228. The absorbed dose rates were calculated for individual radionuclides and the type of emitted radiation. The average dose rate due to these radionuclides was 5.36 µGy y-1, a value six orders of magnitude smaller than the threshold value of absorbed dose rate used in this study (3.65 10³ mGy y-1), and similar to that found in the literature for benthic fish. Ra-226 and U-238 contributed 67% and 22% of the absorbed dose rate, followed by Th-232 with 10%. Ra-228 and Pb-210, in turn, accounted for less than 1% of the absorbed dose rate. This distribution is somewhat different from that reported in the literature, where the Ra-226 accounts for 86% of the absorbed dose rate.


Author(s):  
Samira Yazdani ◽  
Fathollah Bouzarjomehri ◽  
Eric Slessinger

Purpose: Radiation Therapy has a fundamental role in the treatment of cancer. Achieving Tumor Control Probability (TCP), while avoiding normal tissue complication is the goal of this treatment modality. The sensitivity of the thyroid gland to radiation increases the risk of developing secondary thyroid cancer and hypothyroidism. Materials and Methods: The average dose to the thyroid from head and neck irradiation was measured using in vivo dosimetry (Thermolumincsence Dosimetry). The Radiotherapy technique was given using 6 MV x-rays from an Elekta compact linear accelerator and conformal technique delivered 1.8 to 2.0 Gy over 5 sequential days per week. Results: The average absorbed dose to the thyroid from head and neck radiotherapy was 4.4% of the prescription dose and from whole brain radiotherapy was 0.7% of the prescription dose. Thyroid Stimulating Hormone (TSH) levels were determined in 30 patients before and after completion of radiation therapy. The average concentration of TSH increased from 0.88 +/- 0.55 (pre-radiotherapy) to 1.7 +/- 0.66 (post-radiotherapy), (p < 0.05). Conclusion: Thyroid absorbed dose was less than the threshold dose for patients who received radiotherapy to the head and neck based on thyroid function tests


2021 ◽  
Vol 913 (1) ◽  
pp. 012101
Author(s):  
A. D. Widyanugraha ◽  
N. Atikah ◽  
D. Hardiansyah

Abstract The purpose of this study was to identify the most important physiologically-based pharmacokinetic (PBPK) model parameters determining the absorbed dose (AD) in prostate-specific membrane antigen (PSMA) therapy. The extended-Sobol’ global sensitivity analysis method was used to analyze the sensitivity of the PBPK model parameters obtained from 3 patients. The investigated PBPK model parameters were the blood flow to the organs, PSMA binding rate, biological release rates, and density of organs receptor. The outputs of extended Sobol method were the main effect Si and the total effect STi of the parameter of interests for each ADs. The sampling strategy of extended Sobol has been implemented based on the mean and covariance matrix of the parameters. From the simulations, the most important parameters which determine the ADs to the kidney was the kidney receptor density (Si=0,4, STi=0,8). For tumors, it was shown that tumor receptor density was the most essential parameter (Si=0,7, STi=0,8). In conclusion, measurement of the blood flow and organ receptor densities might be of interest to improve individualized treatment of PSMA therapy.


2020 ◽  
Vol 59 (05) ◽  
pp. 365-374
Author(s):  
Theresa Ida Götz ◽  
Elmar Wolfgang Lang ◽  
Olaf Prante ◽  
Michael Cordes ◽  
Torsten Kuwert ◽  
...  

Abstract Objective Patients with advanced prostate cancer are suitable candidates for [177Lu]PSMA-617 therapy. Integrated SPECT/CT systems have the potential to improve the accuracy of patient-specific tumor dosimetry. We present a novel patient-specific Monte Carlo based voxel-wise dosimetry approach to determine organ and total tumor doses (TTD). Methods 13 patients with histologically confirmed metastasized castration-resistant prostate cancer were treated with a total of 18 cycles of [177Lu]PSMA-617 therapy. In each patient, dosimetry was performed after the first cycle of [177Lu]PSMA-617 therapy. Regions of interest were defined manually on the SPECT/CT images for the kidneys, spleen and all 295 PSMA-positive tumor lesions in the field of view. The absorbed dose to normal organs and to all tumor lesions were calculated by a three dimensional dosimetry method based on Monte Carlo Simulations. Results The average dose values yielded the following results: 2.59 ± 0.63 Gy (1.67–3.92 Gy) for the kidneys, 0.79 ± 0.46 Gy (0.31–1.90 Gy) for the spleen and 11.00 ± 11.97 Gy (1.28–49.10 Gy) for all tracer-positive tumor lesions. A trend towards higher TTD was observed in patients with Gleason Scores > 8 compared to Gleason Scores ≤ 8 and in lymph node metastases compared to bone metastases. A significant correlation was determined between the serum-PSA level before RLT and the TTD (r = –0.57, p < 0.05), as well as between the TTD with the percentage change of serum-PSA levels before and after therapy was observed (r = –0.57, p < 0.05). Patients with higher total tumor volumes of PSMA-positive lesions demonstrated significantly lower kidney average dose values (r = –0.58, p < 0.05). Conclusion The presented novel Monte Carlo based voxel-wise dosimetry calculates a patient specific whole-body dose distribution, thus taking into account individual anatomies and tissue compositions showing promising results for the estimation of radiation doses of normal organs and PSMA-positive tumor lesions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pavel Kundrát ◽  
Werner Friedland ◽  
Janine Becker ◽  
Markus Eidemüller ◽  
Andrea Ottolenghi ◽  
...  

Abstract Track structure based simulations valuably complement experimental research on biological effects of ionizing radiation. They provide information at the highest level of detail on initial DNA damage induced by diverse types of radiation. Simulations with the biophysical Monte Carlo code PARTRAC have been used for testing working hypotheses on radiation action mechanisms, for benchmarking other damage codes and as input for modelling subsequent biological processes. To facilitate such applications and in particular to enable extending the simulations to mixed radiation field conditions, we present analytical formulas that capture PARTRAC simulation results on DNA single- and double-strand breaks and their clusters induced in cells irradiated by ions ranging from hydrogen to neon at energies from 0.5 GeV/u down to their stopping. These functions offer a means by which radiation transport codes at the macroscopic scale could easily be extended to predict biological effects, exploiting a large database of results from micro-/nanoscale simulations, without having to deal with the coupling of spatial scales and running full track-structure calculations.


Sign in / Sign up

Export Citation Format

Share Document