The role of intrusive magmatism in shaping Venus’ present-day crust and its age distribution

Author(s):  
Sruthi Uppalapati ◽  
Tobias Rolf ◽  
Stephanie Werner

<p>In its bulk properties, Venus appears similar to Earth, but both planets have developed substantially different geodynamic regimes. Earth has plate tectonics with a continuously renewed surface and its crustal distribution is very dichotomous in composition, thickness, and age. Venus, on the other hand, presently displays a period of a stagnant-lid regime, which may or may not was interrupted by catastrophic events of tectonic recycling during its history. Venus’ crustal thickness is not well constrained, but likely thicker than Earth’s oceanic crust; pronounced crustal dichotomy may be possible but evidence needs yet to be found. The age of the crust appears rather uniform, which traditionally has been taken as evidence that an episodic overturn must have taken place. However, recent arguments have challenged the episodic overturn hypothesis and favor a more continuous stagnant lid on Venus.</p><p> </p><p>To resolve the problem of Venus’ geodynamic regime understanding the generation of Venus’ crust in a dynamic context that also considers the underlying mantle is necessary. This can be achieved using numerical models of mantle convection tailored to Venus, which include the basic complexities of planetary mantle convection in terms of effective rheology, mineralogy and melting processes. Still, previous models have essentially failed to predict the thickness and age characteristics of Venus’ crust. One possible reason is that these models only considered extrusive volcanism, which renews the surface directly, while intrusive magmatism does not. Yet, intrusion seems the dominant mode of magmatism at least on Earth, so we investigate its influence in our model and evaluate whether this ingredient is key to predict Venus’ crustal characteristics.</p><p> </p><p>Using the code StagYY, we compute a suite of mantle convection models in 2D spherical annulus geometry that run through the entire solid-state history of Venus. We vary the partitioning of intrusive and extrusive volcanism from purely extrusive to dominantly intrusive and predict the present-day distributions of crustal thickness and surface age in the stagnant lid regime. With more intrusive magmatism, average crustal thickness is reduced by 20-25%, but mean crustal thickness still exceeds other independent estimates. The surface is on average much older, which is more consistent with mean age estimates from crater counting. However, lateral age variations also become stronger with dominantly intrusive volcanism, which indicates that volcanism keeps going on, but is more restricted spatially. Governing parameters like mantle reference viscosity and relative enrichment of heat-producing elements into the crust change the absolute values of mean crustal thickness and surface age, but do not improve surface age uniformity. This is somewhat at odds with Venus’ seemingly uniform surface age, so suitable conditions for this possibility are further evaluated in models featuring episodic overturn events.</p>

2021 ◽  
Author(s):  
Laurent Jolivet

<div><span>Whether the deformation of continents is entirely caused by stresses transmitted from plate boundaries horizontally through the lithospheric stress-guide or also by viscous coupling with the asthenosphere flowing underneath, which was part of Arthur Holmes’ early vision,  is a long-standing question. An increasing amount of observations suggests an efficient coupling between mantle flow and crustal deformation far from plate boundaries, tipping the scale toward the second option. Modern seismic reflection profiles probing the entire crust down to the Moho show asymmetrical features implying simple shear at crustal scale in compressional (mountain belts) and extensional (rifts and passive margins) contexts. Comparison of crustal-scale strain field with seismic anisotropy in strongly extended regions shows homoaxiality of crustal and mantle deformation in continental rifts and back-arc regions. 2-D and 3-D numerical models show that the flow of mantle underneath these regions is faster than in the crust and drives crustal deformation. Beside seismic tomography that images ancient slabs preserved as velocity anomalies in the deep mantle but does not provide any information on the timing, the geological history of basins and orogens, although indirectly, is the only record of past mantle convection. Looking for evidence of coupling between the tectonic history of wide regions and mantle convection in parallel with numerical modelling can provide clues on how convection drives crustal deformation. The recent evolution of numerical modelling, with high-resolution 3-D experiments, can now match the first order of regional models based on geological observations, including the timing and the sequence of events, which are both crucial elements of geological models. This will allow testing complex conceptual models that have been discussed for long. In this lecture, I review different contexts where these questions are debated. Among these contexts complex in 3-D where the geological data set is abundant, the Mediterranean and the Middle East allow discussing the respective contributions of whole-mantle convection involving large plumes <em>vs</em> more local convection in the upper mantle due to slab dynamics in crustal deformation. Studying the dynamics of the India-Asia collision, and the respective roles of lithospheric-scale indentation on the one hand and asthenospheric flow due to slab retreat on the Pacific rim and to large-scale plumes, on the other hand, is also likely to bring interesting insights on how deformation propagates within continents at long distance from plate boundaries.</span></div>


2020 ◽  
Author(s):  
Enrico Marzotto ◽  
Marcel Thielmann ◽  
Gregor Golabek

<p>A key ingredient to reproduce plate-tectonics in numerical models is a viscoplastic rheology. Strongly temperature-dependent rheology generates a rigid lid at the surface, whereas plastic rheology allows for the formation of plate boundaries. The yield stress limiter  controls the strength of the lithosphere.</p><p>Depending on the value used for  different tectonics regimes can be observed: (i) dripping behaviour (low , (ii) plate-like behaviour (intermediate-low ), (iii) Episodic behaviour (intermediate-high ) and (iv) Stagnant lid behaviour (high ).</p><p>Each lid behaviour can be distinguished by comparing the evolution profile of several parameters: temperature, viscosity, surface Nusselt number and mobility (Tackley, 2000a.).</p><p>Despite the great importance of physical parameters, the outcome of geodynamical models is also affected by the grid resolution as it has been shown that the critical that separates each lid behavior is resolution dependent (Tosi et al., 2015).</p><p>Here we use the code StagYY (Tackley, 2008) in a 2D spherical annulus geometry (Hernlund & Tackley, 2008) to determine the resolution-dependent tectonic regime in a global-scale convection setting. We tested 12 grid resolutions (ranging from 128x32 to 1024x128 nodal points) and 9 different  (ranging from 10 to 90 MPa), keeping all the remaining physical parameters unchanged.</p><p>For these simplified models we assume isothermal free slip boundaries, constant radiogenic heating, no melting, endothermic (410) and exothermic (660) phase transitions. Each simulation was run for 15 Gyrs with a Rayleigh number of ≈8*10^7 to make sure that steady-state conditions were reached.</p><p>Our resolution tests show that the observed tectonic regime is affected by grid resolution as this parameter controls how well the lithosphere is resolved. Low radial resolutions favour weak lid regimes (dripping and plate-like) as the lithosphere is defined by few thick cells, that propagate basal stress to shallower depths. On the other hand low azimuthal resolutions favour strong lid regimes (episodic and stagnant) since plate boundaries remain unresolved. In conclusion, only at high grid resolutions (512x128 and higher) the numerical influence on the observed tectonic regime is low.</p>


Author(s):  
Craig O'Neill ◽  
Simon Turner ◽  
Tracy Rushmer

The development of plate tectonics from a pre-plate tectonics regime requires both the initiation of subduction and the development of nascent subduction zones into long-lived contiguous features. Subduction itself has been shown to be sensitive to system parameters such as thermal state and the specific rheology. While generally it has been shown that cold-interior high-Rayleigh-number convection (such as on the Earth today) favours plates and subduction, due to the ability of the interior stresses to couple with the lid, a given system may or may not have plate tectonics depending on its initial conditions. This has led to the idea that there is a strong history dependence to tectonic evolution—and the details of tectonic transitions, including whether they even occur, may depend on the early history of a planet. However, intrinsic convective stresses are not the only dynamic drivers of early planetary evolution. Early planetary geological evolution is dominated by volcanic processes and impacting. These have rarely been considered in thermal evolution models. Recent models exploring the details of plate tectonic initiation have explored the effect of strong thermal plumes or large impacts on surface tectonism, and found that these ‘primary drivers’ can initiate subduction, and, in some cases, over-ride the initial state of the planet. The corollary of this, of course, is that, in the absence of such ongoing drivers, existing or incipient subduction systems under early Earth conditions might fail. The only detailed planetary record we have of this development comes from Earth, and is restricted by the limited geological record of its earliest history. Many recent estimates have suggested an origin of plate tectonics at approximately 3.0 Ga, inferring a monotonically increasing transition from pre-plates, through subduction initiation, to continuous subduction and a modern plate tectonic regime around that time. However, both numerical modelling and the geological record itself suggest a strong nonlinearity in the dynamics of the transition, and it has been noted that the early history of Archaean greenstone belts and trondhjemite–tonalite–granodiorite record many instances of failed subduction. Here, we explore the history of subduction failure on the early Earth, and couple these with insights from numerical models of the geodynamic regime at the time. This article is part of a discussion meeting issue ‘Earth dynamics and the development of plate tectonics'.


2020 ◽  
Author(s):  
Keely A. O'Farrell ◽  
Sean Trim ◽  
Samuel Butler

<p>Numerical models of mantle convection help our understanding of the complex feedback between the plates and deep interior dynamics through space and time. Did the early Earth have plate tectonics, a stagnant lid, or something in between? The surface dynamics of the early Earth remain poorly understood. Current numerical models of mantle convection are constrained by present-day observations, but the behavior of the hotter, early Earth prior to the onset of plate tectonics is less certain. The early Earth may have possessed a large hot magma ocean trapped near the core-mantle boundary after formation during differentiation, and likely containing different elements from the surrounding mantle. We examine how composition-dependent properties in the deep mantle affect convection dynamics and surface mobility in high Rayleigh number models featuring plastic yielding. Our Newtonian models indicate that increased conductivity or decreased viscosity flattens basal topography while also increasing the potential for surface yielding. We vary the viscosity, thermal conductivity, and internal heating in a compositionally distinct basal magma ocean and explore the compositional topography, insulation effects and surface stresses for non-Newtonian rheology. Models are run using a variety of crustal compositions, such as the inclusion of primordial continental material before the onset of plate tectonics. We monitor the surface for plate-like behavior. Since convective vigour is very strong in the early Earth, specialized tracer methods are employed for increased accuracy. In our models, Stokes flow solutions are obtained using a multigrid method specifically designed to handle large viscosity contrasts and non-Newtonian rheology.</p>


2020 ◽  
Vol 42 (3) ◽  
pp. 271-282
Author(s):  
OLEG IVANOV

The general characteristics of planetary systems are described. Well-known heat sources of evolution are considered. A new type of heat source, variations of kinematic parameters in a dynamical system, is proposed. The inconsistency of the perovskite-post-perovskite heat model is proved. Calculations of inertia moments relative to the D boundary on the Earth are given. The 9 times difference allows us to claim that the sliding of the upper layers at the Earth's rotation speed variations emit heat by viscous friction.This heat is the basis of mantle convection and lithospheric plate tectonics.


Author(s):  
Roy Livermore

Tuzo Wilson introduces the concept of transform faults, which has the effect of transforming Earth Science forever. Resistance to the new ideas is finally overcome in the late 1960s, as the theory of moving plates is established. Two scientists play a major role in quantifying the embryonic theory that is eventually dubbed ‘plate tectonics’. Dan McKenzie applies Euler’s theorem, used previously by Teddy Bullard to reconstruct the continents around the Atlantic, to the problem of plate rotations on a sphere and uses it to unravel the entire history of the Indian Ocean. Jason Morgan also wraps plate tectonics around a sphere. Tuzo Wilson introduces the idea of a fixed hotspot beneath Hawaii, an idea taken up by Jason Morgan to create an absolute reference frame for plate motions.


2010 ◽  
Vol 2010 ◽  
pp. 1-4
Author(s):  
Bronwyn Harris ◽  
Jean P. Pfotenhauer ◽  
Cheri A. Silverstein ◽  
Larry W. Markham ◽  
Kim Schafer ◽  
...  

Hypertrophic cardiomyopathy (HCM) is an inherited cardiac disease with an autosomal dominant mode of transmission. Comprehensive genetic screening of several genes frequently found mutated in HCM is recommended for first-degree relatives of HCM patients. Genetic testing provides the means to identify those at risk of developing HCM and to institute measures to prevent sudden cardiac death (SCD). Here, we present an adoptee whose natural mother and maternal relatives were known be afflicted with HCM and SCD. The proband was followed closely from age 6 to 17 years, revealing a natural history of the progression of clinical findings associated with HCM. Genetic testing of the proband and her natural mother, who is affected by HCM, revealed that they were heterozygous for both the R719Q and T1513S variants in the cardiac beta-myosin heavy chain (MYH7) gene. The proband's ominous family history indicates that the combination of the R719Q and T1513S variantsin cismay be a “malignant” variant that imparts a poor prognosis in terms of the disease progression and SCD risk.


Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 293-306 ◽  
Author(s):  
V. Magni ◽  
J. van Hunen ◽  
F. Funiciello ◽  
C. Faccenna

Abstract. Continental collision is an intrinsic feature of plate tectonics. The closure of an oceanic basin leads to the onset of subduction of buoyant continental material, which slows down and eventually stops the subduction process. In natural cases, evidence of advancing margins has been recognized in continental collision zones such as India-Eurasia and Arabia-Eurasia. We perform a parametric study of the geometrical and rheological influence on subduction dynamics during the subduction of continental lithosphere. In our 2-D numerical models of a free subduction system with temperature and stress-dependent rheology, the trench and the overriding plate move self-consistently as a function of the dynamics of the system (i.e. no external forces are imposed). This setup enables to study how continental subduction influences the trench migration. We found that in all models the slab starts to advance once the continent enters the subduction zone and continues to migrate until few million years after the ultimate slab detachment. Our results support the idea that the advancing mode is favoured and, in part, provided by the intrinsic force balance of continental collision. We suggest that the advance is first induced by the locking of the subduction zone and the subsequent steepening of the slab, and next by the sinking of the deepest oceanic part of the slab, during stretching and break-off of the slab. These processes are responsible for the migration of the subduction zone by triggering small-scale convection cells in the mantle that, in turn, drag the plates. The amount of advance ranges from 40 to 220 km and depends on the dip angle of the slab before the onset of collision.


Sign in / Sign up

Export Citation Format

Share Document