Seasonal melting simulation of permafrost rock glaciers and their potential contribution to sediment loads in Alpine catchments

Author(s):  
Lucas Reid ◽  
Ulrike Scherer ◽  
Erwin Zehe

<p>A common issue with large scale erosion modelling is that local processes are often unaccounted for, either because they haven’t been included in the model conceptually, or because they are undetected yet. On the other hand, significant deviations from such a general soil erosion model to the measurements can reveal those local processes. We compared the average yearly sediment amounts of a network of turbidity measurement stations in the catchment of the alpine River Inn to the results of the large scale erosion model RUSLE2015 (Panagos et. al.) for long term yearly erosion amounts and found a significant underestimation of sediment loads in three sub catchments. An important source of sediments in alpine rivers comes from glaciers, which explains the high loads in one of the stations, but two of the three high sediment load sub catchments are too low to have substantial valley glaciers. But another potential source of glacial sediment exists in the form of permafrost soils and in this case a specific permafrost form: rock glaciers. Rock glaciers in particular have been spotted in those two high sediment load catchments, but since they are hard to detect from remote sensing due to the surface being covered with rocks, the existence or the exact spatial extent is often unknown. But with rising temperatures in the Alps, the areas in which permafrost rock glaciers can exist decreases every year and the depth of the seasonal melting layer increases.</p><p>We propose the hypothesis that the high sediment loads in those sub catchments are caused by increasingly deeper melting of permafrost rock glaciers. This process releases fine materials which have been trapped frozen since the glacial period and are now being eroded and transported to the alpine streams. To get an estimation of potential erodible material from rock glacier melting in the respective sub catchments, we developed a model to simulate the heat diffusion from the air into the frozen ground, while accommodating for the change in specific thermal capacity. The model (developed in Python) takes air temperature time series data as input and can be configured for varying ground stratification setups with different thermal diffusivity values depending on the ground properties.</p><p>From the simulated melting depth of an average square meter of rock glacier we extrapolate the mass of melted material to the potential permafrost erosion material available in the River Inn sub catchments. We show that this source of sediments can be significant and needs to be factored in should an erosion model be used to calculate sediment input into the rivers. But, with the estimation of sediment load from permafrost origins narrowed down, improving a large-scale erosion model like the RUSLE2015 for this alpine mountain region by accounting for local processes like this one is possible. </p>

1981 ◽  
Vol 27 (97) ◽  
pp. 506-510 ◽  
Author(s):  
William J. Wayne

AbstractIn order to flow with the gradients observed (10° to 15°) rock glaciers cannot be simply ice-cemented rock debris, but probably contain masses or lenses of debris-free ice. The nature and origin of the ice in rock glaciers that are in no way connected to ice glaciers has not been adequately explained. Rock glaciers and talus above them are permeable. Water from snow-melt and rain flows through the lower part of the debris on top of the bedrock floor. In the headward part of a rock glacier, where the total thickness is not great, if this groundwater flow is able to maintain water pressure against the base of an aggrading permafrost, segregation of ice lenses should take place. Ice segregation on a large scale would produce lenses of clear ice of sufficient size to permit the streams or lobes of rock debris to flow with gradients comparable to those of glaciers. It would also account for the substantial loss in volume that takes place when a rock glacier stabilizes and collapses.


1978 ◽  
Vol 15 (9) ◽  
pp. 1496-1507 ◽  
Author(s):  
P. G. Johnson

Moraine rock glaciers, talus-derived rock glaciers, and avalanche rock glaciers are described from Grizzly Creek. The main moraine rock glacier has a number of flow lobes of different ages as indicated by lichen and vegetation development. On many of these surfaces there is evidence for recent movement in the form of overridden vegetation surfaces and unstable frontal slopes. Meltwater drainage through the landform is slow, allowing precipitation of the suspended sediment load, and as resurgences do not occur for all of the inflow the possibilities of addition to the ice core or drainage below Grizzly Creek gravels are discussed. The talus-derived rock glaciers differ morphologically from the moraine forms with far greater complexity of the flow ridges but with fewer flow episodes indicated. Drainage through these forms is slow and variable and indicates percolation of meltwater over an impermeable surface within the form. Avalanche rock glaciers by contrast are relatively simple morphologically and the extension from the base of the talus is attributed to ice content derived from the avalanches.


Geosciences ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 343 ◽  
Author(s):  
Jogendra Sarma ◽  
Shukla Acharjee

The Brahmaputra River flows through Assam, India, for about 670 km along an alluvial valley as a wide braided river. The width of the river varies with time along its course. The braiding intensity of this river is estimated using the braiding index (BI) of Brice (1964), which also changes with space and time along the course of the river. Temporal changes of both width and BI have been studied using topographic maps of 1912–1928 and 1963–1975, and dry season satellite data of 1996, 2000, 2007 and 2009. The mean widths of the Brahmaputra River channel in Assam during 1912–1928, 1963–1975, 1996, 2000, 2007 and 2009 were 5949 m, 7455 m, 7505 m, 8008 m, 8308 m and 9012 m, respectively, confirming an overall increase in width with time. Both the width and variation of width are lowest in four short narrower segments of the river. Three of these segments represent hard points comprising gneissic rock, and one segment is on alluvium comprising cohesive clay. The increase in width is correlated to enormous sediment load produced by the great Assam earthquake of 1950 and large-scale deforestation in the Himalayas. The mean BIs for the Brahmaputra for 1963–1975, 1996, 2000, 2007 and 2009 were 8.59, 8.43, 6.67, 6.58 and 7.70, respectively, indicating in general a decreasing trend up to 2007. The BI showed low variation at the four narrow segments where there is also a minimum variation of the channel width. The BI has increased significantly in the upstream part of the river. Very high fluctuation of discharge (17,000 m 3 / s − 1 in 24 h) and high sediment loads of the Brahmaputra (daily mean sediment discharge of 2.0 million tonnes during monsoon), erodible alluvial banks and high width/depth ratios are the main causes of development of braiding. The interrelationship between channel width and BI of the Brahmaputra shows a positive correlation, indicating an increase in BI with increasing channel width.


2021 ◽  
Vol 13 (23) ◽  
pp. 4738
Author(s):  
Xuefei Zhang ◽  
Min Feng ◽  
Hong Zhang ◽  
Chao Wang ◽  
Yixian Tang ◽  
...  

Rock glaciers represent typical periglacial landscapes and are distributed widely in alpine mountain environments. Rock glacier activity represents a critical indicator of water reserves state, permafrost distribution, and landslide disaster susceptibility. The dynamics of rock glacier activity in alpine periglacial environments are poorly quantified, especially in the central Himalayas. Multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) has been shown to be a useful technique for rock glacier deformation detection. In this study, we developed a multi-baseline persistent scatterer (PS) and distributed scatterer (DS) combined MT-InSAR method to monitor the activity of rock glaciers in the central Himalayas. In periglacial landforms, the application of the PS interferometry (PSI) method is restricted by insufficient PS due to large temporal baseline intervals and temporal decorrelation, which hinder comprehensive measurements of rock glaciers. Thus, we first evaluated the rock glacier interferometric coherence of all possible interferometric combinations and determined a multi-baseline network based on rock glacier coherence; then, we constructed a Delaunay triangulation network (DTN) by exploiting both PS and DS points. To improve the robustness of deformation parameters estimation in the DTN, we combined the Nelder–Mead algorithm with the M-estimator method to estimate the deformation rate variation at the arcs of the DTN and introduced a ridge-estimator-based weighted least square (WLR) method for the inversion of the deformation rate from the deformation rate variation. We applied our method to Sentinel-1A ascending and descending geometry data (May 2018 to January 2019) and obtained measurements of rock glacier deformation for 4327 rock glaciers over the central Himalayas, at least more than 15% detecting with single geometry data. The line-of-sight (LOS) deformation of rock glaciers in the central Himalayas ranged from −150 mm to 150 mm. We classified the active deformation area (ADA) of all individual rock glaciers with the threshold determined by the standard deviation of the deformation map. The results show that 49% of the detected rock glaciers (monitoring rate greater than 30%) are highly active, with an ADA ratio greater than 10%. After projecting the LOS deformation to the steep slope direction and classifying the rock glacier activity following the IPA Action Group guideline, 12% of the identified rock glaciers were classified as active and 86% were classified as transitional. This research is the first multi-baseline, PS, and DS network-based MT-InSAR method applied to detecting large-scale rock glaciers activity.


1981 ◽  
Vol 27 (97) ◽  
pp. 506-510 ◽  
Author(s):  
William J. Wayne

AbstractIn order to flow with the gradients observed (10° to 15°) rock glaciers cannot be simply ice-cemented rock debris, but probably contain masses or lenses of debris-free ice. The nature and origin of the ice in rock glaciers that are in no way connected to ice glaciers has not been adequately explained. Rock glaciers and talus above them are permeable. Water from snow-melt and rain flows through the lower part of the debris on top of the bedrock floor. In the headward part of a rock glacier, where the total thickness is not great, if this groundwater flow is able to maintain water pressure against the base of an aggrading permafrost, segregation of ice lenses should take place. Ice segregation on a large scale would produce lenses of clear ice of sufficient size to permit the streams or lobes of rock debris to flow with gradients comparable to those of glaciers. It would also account for the substantial loss in volume that takes place when a rock glacier stabilizes and collapses.


2020 ◽  
Author(s):  
Catherine Mushi ◽  
Preksedis Marko Ndomba ◽  
Jeffrey Neal ◽  
Jules Beya ◽  
Mark Trigg

<p>Recent mapping of sediment sources and erosion processes in the Congo basin show that sediment loads may be higher than previously estimated. Stark temporal changes in water turbidity in some of the tributaries observed by satellite images over the past 25 years indicate a need for closer monitoring of sediment load transported in the River. Turbidity sensors present an attractive option for sediment monitoring due to their ability to provide automated continuous time series data for estimation of suspended sediment concentration and suspended sediment fluxes in rivers; an attribute that is particularly important for remote rivers like the Congo. Continuous in-situ turbidity measurements were made using an OBS-501 turbidity sensor at the Kutu Moke monitoring site on the Kasai River, a major tributary of the Congo River between July 2018 and August 2019. The sensor infers turbidity by detecting the intensity of light scattered from suspended particles in water. We explore a field calibration of turbidity measurements with over 120 simultaneous suspended sediment concentration (SSC) measurements for the same period. Sediment loads estimated using high frequency turbidity data measurements (hourly) are then compared to loads estimated using classical sediment rating curves to establish if the turbidity provides a better representation of the suspended sediment load.</p>


1987 ◽  
Vol 33 (115) ◽  
pp. 300-310 ◽  
Author(s):  
T.J.H. Chinn ◽  
A. Dillon

Abstract“Whisky Glacier” on James Ross Island, Antarctic Peninsula, comprises anévéand clean ice trunk surrounded by an extensive area of debris-covered ice resembling a rock glacier. The debris-free trunk of the glacier abuts abruptly against the broad, totally debris-covered tongue at a number of concentric zones where debris-laden beds crop out at the surface in a manner similar to the “inner moraine” formations of many polar glaciers.Ice structures and foliation suggest that “Whisky Glacier” is a polythermal glacier which is wet-based under the debris-free zone, and dry-based under the debris-covered zone. It is surmised that the glacier sole crosses the freezing front close to where the basal debris beds are upwarped towards the surface. Here, basal water is confined, and freezes to the under side of the glacier in thick beds of regelation ice which are uplifted to the surface along with the debris-laden beds. Ablation losses effectively cease beneath the blanket of debris covering the tongue.The transition from wet-based to dry-based conditions at the glacier sole is a powerful mechanism for entraining debris into a glacier and, in the case of “Whisky Glacier”, for lifting debris to the surface. It is suggested that this may be a mechanism for forming some polar rock glaciers.


1980 ◽  
Vol 45 (2) ◽  
pp. 246-267 ◽  
Author(s):  
Robert L. Hamblin ◽  
Brian L. Pitcher

Several lines of archaeological evidence are presented in this paper to suggest the existence of class warfare among the Classic Maya and of issues that historically have been associated with class conflict. This evidence indicates that class warfare may have halted the rule of the monument-producing, or Classic, elites and precipitated the depopulation of the lowland area. The theory is evaluated quantitatively by testing for time-related mathematical patterns that have been found to characterize large-scale conflicts in historical societies. The information used in the evaluation involves the time series data on the duration of rule by Classic elites as inferred from the production of monuments with Long Count dates at a sample of 82 ceremonial centers. The analyses confirm that the Maya data do exhibit the temporal and geographical patterns predicted from the class conflict explanation of the Classic Maya collapse. Alternative predictions from the other theories are considered but generally not found to be supported by these data.


The Holocene ◽  
2011 ◽  
Vol 22 (7) ◽  
pp. 761-771 ◽  
Author(s):  
Matthias Rode ◽  
Andreas Kellerer-Pirklbauer

Schmidt-hammer rebound values ( R-values) enable relative-age dating of landforms, with R-values relating to degree of weathering and therefore length of exposure. This method – recently termed as Schmidt-hammer exposure-age dating (SHD) – was applied to date five rock glaciers (size range, 0.01–0.12 km2) and one recent rockfall deposit at the study area Schöderkogel-Eisenhut, in the Schladminger Tauern Range (14°03′E, 47°15′N), Austria. The rock glaciers consist of gneiss or high metamorphic series of mica-schist that are comparable in their R-values. Four of them are relict (permafrost absent) and one is intact (containing patches of permafrost). On each of the five rock glaciers, SHD was carried out at 4–6 sites (50 measurements per site) along a longitudinal transect from the frontal ridge to the root zone. Results at all five rock glaciers are generally consistent with each other sharing statistically significant R-values along transects. The range between the highest and the lowest mean R-value at each of the five rock glaciers is 9.9–5.2. Using rock glacier length and surface velocity data from nearby sites, the rock glacier development must have lasted for several thousand years. Furthermore, by using SHD results from rock glaciers of known age from other sites in the region with comparable geology, approximate surface ages of 6.7–11.4 ka were estimated. This indicates long formation periods for all five rock glaciers. Our results suggest that many of the 1300 relict rock glaciers in central and eastern Austria were formed over a long period during the Lateglacial and Holocene period.


2006 ◽  
Vol 33 (6) ◽  
pp. 719-725 ◽  
Author(s):  
Branko Ladanyi

Owing to climate warming trends, there has been an increasing interest in recent years in the accelerating creep of rock glaciers and frozen slopes. In the field of glaciology, the creep of glaciers has been extensively studied, observed, and analyzed for more than 100 years. Many valuable and detailed theoretical models have been proposed through the years for simulating the creep behavior of glaciers. This synthesis paper has no intention of proposing another one. Its purpose is only to supply to these models a potential geotechnical background, borrowed from the connected fields of frozen ground mechanics, rock mechanics, and the mechanics of mixtures. In particular, this paper attempts to extend some known models of mechanical behavior of unfrozen soil and rock masses to masses containing ice and to apply these models to large-scale creep of ice–rock mixtures and ice–rock interface problems under variable temperature and stress conditions.Key words: ice, rock, mixture, rock joints, slope stability, creep, temperature.


Sign in / Sign up

Export Citation Format

Share Document