scholarly journals A Study on Variation in Channel Width and Braiding Intensity of the Brahmaputra River in Assam, India

Geosciences ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 343 ◽  
Author(s):  
Jogendra Sarma ◽  
Shukla Acharjee

The Brahmaputra River flows through Assam, India, for about 670 km along an alluvial valley as a wide braided river. The width of the river varies with time along its course. The braiding intensity of this river is estimated using the braiding index (BI) of Brice (1964), which also changes with space and time along the course of the river. Temporal changes of both width and BI have been studied using topographic maps of 1912–1928 and 1963–1975, and dry season satellite data of 1996, 2000, 2007 and 2009. The mean widths of the Brahmaputra River channel in Assam during 1912–1928, 1963–1975, 1996, 2000, 2007 and 2009 were 5949 m, 7455 m, 7505 m, 8008 m, 8308 m and 9012 m, respectively, confirming an overall increase in width with time. Both the width and variation of width are lowest in four short narrower segments of the river. Three of these segments represent hard points comprising gneissic rock, and one segment is on alluvium comprising cohesive clay. The increase in width is correlated to enormous sediment load produced by the great Assam earthquake of 1950 and large-scale deforestation in the Himalayas. The mean BIs for the Brahmaputra for 1963–1975, 1996, 2000, 2007 and 2009 were 8.59, 8.43, 6.67, 6.58 and 7.70, respectively, indicating in general a decreasing trend up to 2007. The BI showed low variation at the four narrow segments where there is also a minimum variation of the channel width. The BI has increased significantly in the upstream part of the river. Very high fluctuation of discharge (17,000 m 3 / s − 1 in 24 h) and high sediment loads of the Brahmaputra (daily mean sediment discharge of 2.0 million tonnes during monsoon), erodible alluvial banks and high width/depth ratios are the main causes of development of braiding. The interrelationship between channel width and BI of the Brahmaputra shows a positive correlation, indicating an increase in BI with increasing channel width.

1972 ◽  
Vol 44 ◽  
pp. 283-284 ◽  
Author(s):  
W. H. McCrea

The proposition for consideration is:A QSO is an approximately standard object: it has an approximately standard history consisting mainly of an increase of optical brightness to a very high peak, and a subsequent decline. I suggest that the history has a relevant duration of about 106 yr, and that the total increase of brightness is by a factor about 103, while the mean brightness is of the order of 1% of the peak brightness (so that the peak is rather sharp).


2020 ◽  
Author(s):  
Lucas Reid ◽  
Ulrike Scherer ◽  
Erwin Zehe

<p>A common issue with large scale erosion modelling is that local processes are often unaccounted for, either because they haven’t been included in the model conceptually, or because they are undetected yet. On the other hand, significant deviations from such a general soil erosion model to the measurements can reveal those local processes. We compared the average yearly sediment amounts of a network of turbidity measurement stations in the catchment of the alpine River Inn to the results of the large scale erosion model RUSLE2015 (Panagos et. al.) for long term yearly erosion amounts and found a significant underestimation of sediment loads in three sub catchments. An important source of sediments in alpine rivers comes from glaciers, which explains the high loads in one of the stations, but two of the three high sediment load sub catchments are too low to have substantial valley glaciers. But another potential source of glacial sediment exists in the form of permafrost soils and in this case a specific permafrost form: rock glaciers. Rock glaciers in particular have been spotted in those two high sediment load catchments, but since they are hard to detect from remote sensing due to the surface being covered with rocks, the existence or the exact spatial extent is often unknown. But with rising temperatures in the Alps, the areas in which permafrost rock glaciers can exist decreases every year and the depth of the seasonal melting layer increases.</p><p>We propose the hypothesis that the high sediment loads in those sub catchments are caused by increasingly deeper melting of permafrost rock glaciers. This process releases fine materials which have been trapped frozen since the glacial period and are now being eroded and transported to the alpine streams. To get an estimation of potential erodible material from rock glacier melting in the respective sub catchments, we developed a model to simulate the heat diffusion from the air into the frozen ground, while accommodating for the change in specific thermal capacity. The model (developed in Python) takes air temperature time series data as input and can be configured for varying ground stratification setups with different thermal diffusivity values depending on the ground properties.</p><p>From the simulated melting depth of an average square meter of rock glacier we extrapolate the mass of melted material to the potential permafrost erosion material available in the River Inn sub catchments. We show that this source of sediments can be significant and needs to be factored in should an erosion model be used to calculate sediment input into the rivers. But, with the estimation of sediment load from permafrost origins narrowed down, improving a large-scale erosion model like the RUSLE2015 for this alpine mountain region by accounting for local processes like this one is possible. </p>


1988 ◽  
Vol 59 (01) ◽  
pp. 029-033 ◽  
Author(s):  
K G Chamberlain ◽  
D G Penington

SummaryNormal human platelets have been separated according to density on continuous Percoll gradients and the platelet distribution divided into five fractions containing approximately equal numbers of platelets. The mean volumes and protein contents of the platelets in each fraction were found to correlate positively with density while the protein concentration did not differ significantly between the fractions. Four mitochondrial enzymes (monoamine oxidase, glutamate dehydrogenase, cytochrome oxidase and NADP-dependent isocitrate dehydrogenase) were assayed and their activities per unit volume were found to increase in a very similar monotonie fashion with platelet density. When MAO and GDH were assayed on the same set of density fractions the correlation between the two activities was very high (r = 0.94–1.00, p <0.001) and a similar close correlation was found between MAO and ICDH. The results support the hypothesis that high density platelets either have a higher concentration of mitochondria or have larger mitochondria than low density platelets.


2004 ◽  
Vol 155 (5) ◽  
pp. 142-145 ◽  
Author(s):  
Claudio Defila

The record-breaking heatwave of 2003 also had an impact on the vegetation in Switzerland. To examine its influences seven phenological late spring and summer phases were evaluated together with six phases in the autumn from a selection of stations. 30% of the 122 chosen phenological time series in late spring and summer phases set a new record (earliest arrival). The proportion of very early arrivals is very high and the mean deviation from the norm is between 10 and 20 days. The situation was less extreme in autumn, where 20% of the 103 time series chosen set a new record. The majority of the phenological arrivals were found in the class «normal» but the class«very early» is still well represented. The mean precocity lies between five and twenty days. As far as the leaf shedding of the beech is concerned, there was even a slight delay of around six days. The evaluation serves to show that the heatwave of 2003 strongly influenced the phenological events of summer and spring.


1991 ◽  
Vol 56 ◽  
Author(s):  
B. Meuleman

After  its introduction at the start of this century, the Corsican pine has become  an important forest tree in Flanders (Belgium). The total area covered by  Corsican pine is about 11.000 ha. Due to climatological factors it is  virtually absent from the Walloon part of Belgium. Despite the crisis in 1984  - 1986, practical experiences with its vitality and disease resistance are  generally positive. Compared to Scots pine which is native to Belgium, its  productivity and insensitivity for insect pests is large.     To quantify the productivity of Corsican pine, a growth table was  constructed using a method developed by PALM and DAGNELIE. It was based on  data from 321 temporarily and 80 permanent plots distributed over Flanders.  Five yield classes were distinguished according to dominant height at 50  years. For each yield class, a series of tables as a function of treatment  was constructed. Treatments were characterized by the mean annual  circumference increment.     These tables allow to predict the growth of Corsican pines. Such  predictions for the whole range of species are necessary for the development  of a good forestry policy and for timber industries. The tables also provide  information for any given Corsican pine stand that is helpful in practice:  expected productivity, stand density, determination of the felling quantum.      The data show that the productivity of Corsican pine is very high. The very  early culmination of the current annual volume increment and the rather  constant level of the mean annual volume increment after culmination are  interesting new findings. It is also shown that it is possible to work with  long rotation periods. This offers good opportunities for the production of  high quality wood and is also important for the social and ecological role of  the forest.     Productivity is lowest on very dry and sandy soils. A high productivity on  moderately dry sand and loamy sand soils and loamy soils make the Corsican  pine one of the most valuable tree species for the Kempen in Flanders.  Although productivity is very high on well drained sandy loam and loam soils,  plantation of Corsican pine on these locations is not advised.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1021
Author(s):  
Bernhard Dorweiler ◽  
Pia Elisabeth Baqué ◽  
Rayan Chaban ◽  
Ahmed Ghazy ◽  
Oroa Salem

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original STL file using dedicated 3D engineering software. The mean wall thickness for the large-scale aortic models was 2.11 µm (+5%), and 1.26 µm (+0.8%) for the coronary models, resulting in an overall mean wall thickness of +5% for all 35 3D models when compared to the original STL file. The mean surface deviation was found to be +120 µm for all models, with +100 µm for the aortic and +180 µm for the coronary 3D models, respectively. Both printing technologies were found to conform with the currently set standards of accuracy (<1 mm), demonstrating that accurate 3D models of large and small vessel anatomy can be generated by both FDM and PolyJet printing technology using rigid and flexible polymers.


Sports ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Atsushi Aoyagi ◽  
Keisuke Ishikura ◽  
Yoshiharu Nabekura

The aim of this study was to examine the exercise intensity during the swimming, cycling, and running legs of nondraft legal, Olympic-distance triathlons in well-trained, age-group triathletes. Seventeen male triathletes completed incremental swimming, cycling, and running tests to exhaustion. Heart rate (HR) and workload corresponding to aerobic and anaerobic thresholds, maximal workloads, and maximal HR (HRmax) in each exercise mode were analyzed. HR and workload were monitored throughout the race. The intensity distributions in three HR zones for each discipline and five workload zones in cycling and running were quantified. The subjects were then assigned to a fast or slow group based on the total race time (range, 2 h 07 min–2 h 41 min). The mean percentages of HRmax in the swimming, cycling, and running legs were 89.8% ± 3.7%, 91.1% ± 4.4%, and 90.7% ± 5.1%, respectively, for all participants. The mean percentage of HRmax and intensity distributions during the swimming and cycling legs were similar between groups. In the running leg, the faster group spent relatively more time above HR at anaerobic threshold (AnT) and between workload at AnT and maximal workload. In conclusion, well-trained male triathletes performed at very high intensity throughout a nondraft legal, Olympic-distance triathlon race, and sustaining higher intensity during running might play a role in the success of these athletes.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Chao Xiong ◽  
Claudia Stolle ◽  
Patrick Alken ◽  
Jan Rauberg

Abstract In this study, we have derived field-aligned currents (FACs) from magnetometers onboard the Defense Meteorological Satellite Project (DMSP) satellites. The magnetic latitude versus local time distribution of FACs from DMSP shows comparable dependences with previous findings on the intensity and orientation of interplanetary magnetic field (IMF) By and Bz components, which confirms the reliability of DMSP FAC data set. With simultaneous measurements of precipitating particles from DMSP, we further investigate the relation between large-scale FACs and precipitating particles. Our result shows that precipitation electron and ion fluxes both increase in magnitude and extend to lower latitude for enhanced southward IMF Bz, which is similar to the behavior of FACs. Under weak northward and southward Bz conditions, the locations of the R2 current maxima, at both dusk and dawn sides and in both hemispheres, are found to be close to the maxima of the particle energy fluxes; while for the same IMF conditions, R1 currents are displaced further to the respective particle flux peaks. Largest displacement (about 3.5°) is found between the downward R1 current and ion flux peak at the dawn side. Our results suggest that there exists systematic differences in locations of electron/ion precipitation and large-scale upward/downward FACs. As outlined by the statistical mean of these two parameters, the FAC peaks enclose the particle energy flux peaks in an auroral band at both dusk and dawn sides. Our comparisons also found that particle precipitation at dawn and dusk and in both hemispheres maximizes near the mean R2 current peaks. The particle precipitation flux maxima closer to the R1 current peaks are lower in magnitude. This is opposite to the known feature that R1 currents are on average stronger than R2 currents.


2020 ◽  
Vol 501 (1) ◽  
pp. L71-L75
Author(s):  
Cornelius Rampf ◽  
Oliver Hahn

ABSTRACT Perturbation theory is an indispensable tool for studying the cosmic large-scale structure, and establishing its limits is therefore of utmost importance. One crucial limitation of perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high orders in the vicinity of the first shell-crossing for random initial data in a realistic three-dimensional Universe. For this, we have numerically implemented the all-order recursion relations for the matter trajectories, from which the convergence of the LPT series at shell-crossing is established. Convergence studies performed at large orders reveal the nature of the convergence-limiting singularities. These singularities are not the well-known density singularities at shell-crossing but occur at later times when LPT already ceased to provide physically meaningful results.


2021 ◽  
Vol 10 (7) ◽  
pp. 440
Author(s):  
Guimin Zhu ◽  
Kathleen Stewart ◽  
Deb Niemeier ◽  
Junchuan Fan

As of March 2021, the State of Florida, U.S.A. had accounted for approximately 6.67% of total COVID-19 (SARS-CoV-2 coronavirus disease) cases in the U.S. The main objective of this research is to analyze mobility patterns during a three month period in summer 2020, when COVID-19 case numbers were very high for three Florida counties, Miami-Dade, Broward, and Palm Beach counties. To investigate patterns, as well as drivers, related to changes in mobility across the tri-county region, a random forest regression model was built using sociodemographic, travel, and built environment factors, as well as COVID-19 positive case data. Mobility patterns declined in each county when new COVID-19 infections began to rise, beginning in mid-June 2020. While the mean number of bar and restaurant visits was lower overall due to closures, analysis showed that these visits remained a top factor that impacted mobility for all three counties, even with a rise in cases. Our modeling results suggest that there were mobility pattern differences between counties with respect to factors relating, for example, to race and ethnicity (different population groups factored differently in each county), as well as social distancing or travel-related factors (e.g., staying at home behaviors) over the two time periods prior to and after the spike of COVID-19 cases.


Sign in / Sign up

Export Citation Format

Share Document