Pyroclast textures and fragmentation efficiency - constraining the range of eruptive dynamics of Mt. Pelée volcano, Martinique

Author(s):  
Mila Huebsch ◽  
Ulrich Kueppers ◽  
Guillaume Carazzo ◽  
Anne-Marie Lejeune ◽  
Audrey Michaud-Dubuy ◽  
...  

<p>Mt. Pelée is a historically active stratovolcano, situated on the island of Martinique in the French Caribbean.  It exhibits a variety of eruptive styles, from dome formation to highly violent explosivity. </p><p>In 1902, a Pelean event destroyed the town of St. Pierre, killing more than 28,000 residents (Lacroix, 1904).  As this town is now re-established, along with several others along the volcano’s flanks, it is of utmost importance to understand the range of eruptive activity possible such that preparedness of the local authorities and population can be improved.</p><p>There remains a gap in quantitative understanding of the energy required to fragment material to produce explosive eruptions, as this process is not directly observable.  Further, eruption records are incomplete (as at most volcanic islands) due to product loss to the ocean and intense tropical erosion.  Here, we constrain the energies of past eruptions by performing rapid decompression experiments and comparing the resulting grain-size distributions with primary deposits and dispersal in the field.</p><p>During a field campaign in March 2019, we collected ash and pumice blocks from five recent magmatic eruptions.  Two of these eruptions are historic (the Pelean episodes of 1902-1905, and 1929-1932), and three are prehistoric (the Plinian eruptions of 1300 CE P1, 280 CE P2, and 79 CE P3)(Carazzo et al. 2012).  We characterized ash (morphology), and constrained petrophysical (porosity, density, and permeability) and thermal properties of cylindrical samples. These cores (58-70% porosity) were subjected to rapid decompression in shock tube experiments to mimic explosive eruptions.  Fragmentation efficiency results from a combination of material properties and experimental conditions (temperature and overpressure). The particulate products were evaluated for their grain-size distribution in order to calculate the fractal dimension D<sub>f</sub> and constrain eruptive conditions.</p><p>Our results provide new insights into the energy required for magma fragmentation at Mt. Pelée and similar volcanoes. We hope to elucidate whether the 1902 eruption was catastrophic due to significant and measurable differences in eruption dynamics, or due to the flank topography and direction of the initial blast. </p><p> </p><p>References:</p><p>Carazzo, G., Tait, S., Kaminski, E., Gardner, E., (2012), The recent Plinian explosive activity of Mt. Pelée volcano (Lesser Antilles): The P1 AD 1300 eruption, Bull. Volc., 74, 2187-2203, doi: 10.1007/s00445-012-0655-4</p><p>Lacroix, A. (1904) La Montagne Pelée et ses éruptions. Masson, Paris</p>

1997 ◽  
Vol 47 (2) ◽  
pp. 125-139 ◽  
Author(s):  
Olga A. Braitseva ◽  
Vera V. Ponomareva ◽  
Leopold D. Sulerzhitsky ◽  
Ivan V. Melekestsev ◽  
John Bailey

Detailed tephrochronological studies in Kamchatka Peninsula, Russia, permitted documentation of 24 Holocene key-marker tephra layers related to the largest explosive eruptions from 11 volcanic centers. Each layer was traced for tens to hundreds of kilometers away from the source volcano; its stratigraphic position, area of dispersal, age, characteristic features of grain-size distribution, and chemical and mineral composition confirmed its identification. The most important marker tephra horizons covering a large part of the peninsula are (from north to south; ages given in14C yr B.P.) SH2(≈1000 yr B.P.) and SH3(≈1400 yr B.P.) from Shiveluch volcano; KZ (≈7500 yr B.P.) from Kizimen volcano; KRM (≈7900 yr B.P.) from Karymsky caldera; KHG (≈7000 yr B.P.) from Khangar volcano; AV1(≈3500 yr B.P.), AV2(≈4000 yr B.P.), AV4(≈5500 yr B.P.), and AV5(≈5600 yr B.P.) from Avachinsky volcano; OP (≈1500 yr B.P.) from the Baraniy Amfiteatr crater at Opala volcano; KHD (≈2800 yr B.P.) from the “maar” at Khodutka volcano; KS1(≈1800 yr B.P.) and KS2(≈6000 yr B.P.) from the Ksudach calderas; KSht3(A.D. 1907) from Shtyubel cone in Ksudach volcanic massif; and KO (≈7700 yr B.P.) from the Kuril Lake-Iliinsky caldera. Tephra layers SH5(≈2600 yr B.P.) from Shiveluch volcano, AV3(≈4500 yr B.P.) from Avachinsky volcano, OPtr(≈4600 yr B.P.) from Opala volcano, KS3(≈6100 yr B.P.) and KS4(≈8800 yr B.P.) from Ksudach calderas, KSht1(≈1100 yr B.P.) from Shtyubel cone, and ZLT (≈4600 yr B.P.) from Iliinsky volcano cover smaller areas and have local stratigraphic value, as do the ash layers from the historically recorded eruptions of Shiveluch (SH1964) and Bezymianny (B1956) volcanoes. The dated tephra layers provide a record of the most voluminous explosive events in Kamchatka during the Holocene and form a tephrochronological timescale for dating and correlating various deposits.


Author(s):  
Mo Ji ◽  
Martin Strangwood ◽  
Claire Davis

AbstractThe effects of Nb addition on the recrystallization kinetics and the recrystallized grain size distribution after cold deformation were investigated by using Fe-30Ni and Fe-30Ni-0.044 wt pct Nb steel with comparable starting grain size distributions. The samples were deformed to 0.3 strain at room temperature followed by annealing at 950 °C to 850 °C for various times; the microstructural evolution and the grain size distribution of non- and fully recrystallized samples were characterized, along with the strain-induced precipitates (SIPs) and their size and volume fraction evolution. It was found that Nb addition has little effect on recrystallized grain size distribution, whereas Nb precipitation kinetics (SIP size and number density) affects the recrystallization Avrami exponent depending on the annealing temperature. Faster precipitation coarsening rates at high temperature (950 °C to 900 °C) led to slower recrystallization kinetics but no change on Avrami exponent, despite precipitation occurring before recrystallization. Whereas a slower precipitation coarsening rate at 850 °C gave fine-sized strain-induced precipitates that were effective in reducing the recrystallization Avrami exponent after 50 pct of recrystallization. Both solute drag and precipitation pinning effects have been added onto the JMAK model to account the effect of Nb content on recrystallization Avrami exponent for samples with large grain size distributions.


1999 ◽  
Vol 580 ◽  
Author(s):  
G.D. Hibbard ◽  
U. Erb ◽  
K.T. Aust ◽  
G. Palumbo

AbstractIn this study, the effect of grain size distribution on the thermal stability of electrodeposited nanocrystalline nickel was investigated by pre-annealing material such that a limited amount of abnormal grain growth was introduced. This work was done in an effort to understand the previously reported, unexpected effect, of increasing thermal stability with decreasing grain size seen in some nanocrystalline systems. Pre-annealing produced a range of grain size distributions in materials with relatively unchanged crystallographic texture and total solute content. Subsequent thermal analysis of the pre-annealed samples by differential scanning calorimetry showed that the activation energy of further grain growth was unchanged from the as-deposited nanocrystalline nickel.


2021 ◽  
Author(s):  
Mila Huebsch ◽  
Ulrich Kueppers ◽  
Guillaume Carazzo ◽  
Anne-Marie Lejeune ◽  
Audrey Michaud-Dubuy ◽  
...  

<p>Mt. Pelée is a historically active volcano, situated on the island of Martinique (Lesser Antilles), that has shown a variety of explosive styles in the recent past, ranging from dome-forming (Pelean) to open-vent (Plinian) eruptions.  The 1902-1905 eruption is infamous for the pyroclastic density currents (PDCs) that destroyed the towns of St. Pierre and Morne Rouge, killing 30 000 residents.  Since the last eruption (dome-forming) in 1929-1932, Mt. Pelée was quiet and considered dormant until recently.  In late 2020, the local Volcanological Observatory (OVSM) raised the alert level following a noticeable increase in seismicity, bringing into effect a reinforcement of monitoring resources.  As St. Pierre is long since re-established, along with several other towns along the volcano’s flanks, it is of utmost importance to understand the possible range of eruptive activity to improve the preparedness strategies of local communities.</p><p>The precise controls on eruption dynamics vary across volcanic systems and cannot be constrained via direct observation. However, crucial inferences can be made based on petrophysical properties and mechanical behaviours of erupted materials.  For this study, we collected samples from PDC deposits of Mt. Pelée, from the two historic Pelean (1902-1905, and 1929-1932) and three pre-Columbian Plinian eruptions (1300 CE P1, 280 CE P2, and 79 CE P3). We measured petrophysical properties (density, porosity, permeability) of cylindrical samples drilled from bomb-sized clasts and investigated their fragmentation behaviour via grain size and high-speed video analysis. These results are used in comparison with field data of grain-size distribution (GSD) of individual outcrops and calculated total GSD data.  We investigated the effects of transport-related sorting or fining.</p><p>The “Pelean” samples are found to be denser (32-47% open porosity) than the pumiceous “Plinian” samples (55-66% open porosity).  Moreover, these two classes are distinctly different in their crystallinity as samples underwent different ascent conditions.  In our experiments, distinct fragmentation behaviour and resulting GSDs are observed for samples from each eruption style, regardless of experimental pressure conditions (5-20 MPa). Our results show the paramount importance of open porosity on fragmentation efficiency in pumiceous samples, alongside a strong influence of crystallinity.  The fractal dimension of fragmentation calculated from weight fractions, independent of grain shape, shows clear differences in fragmentation efficiency as a function of sample properties and experimental starting conditions.</p><p>Our results suggest that (i) the variability in porosity and permeability is too low to cause the increased explosivity exhibited during the 1902 eruption compared to the 1929 event, (ii) open porosity has a major control on fragmentation efficiency in pumiceous samples, (iii) fragmentation efficiency can be effectively evaluated by calculating the fractal dimension of the cumulative weight fractions of experimental products.</p><p>The influence of crystallinity and pore textures on fragmentation efficiency must be further investigated to aid hazard model development for future eruptions of Mt. Pelée. Future work will constrain these textural parameters of naturally and experimentally fragmented materials from Mt. Pelée, to further elucidate the controls on eruptive dynamics at this hazardous volcano.</p>


2021 ◽  
Author(s):  
◽  
Anna Borisovna Albot

<p>Grain size analysis of the terrigenous fraction of a laminated diatom ooze dating back to 11.4 kyr recovered offshore Adélie Land, East Antarctic margin was used to examine variations in sediment transport, depositional environments and Holocene climate variability at the location. Interpretations were assisted by additional proxies of primary productivity (δ¹³CFA, BSi%), glacial meltwater input (δDFA) and subsurface temperature (TEXL₈₆). Three lithologic intervals with distinct grain size distributions were identified. At ~11.4 ka the diatom ooze has a clear glacimarine influence which gradually decreases until ~8.2 ka. During this time interval, coincident with the early Holocene warm period, sediment is inferred to have been delivered by glacial meltwater plumes and ice-bergs in a calving bay environment. It is suggested that the glaciers in Adélie Land had retreated to their present day grounding lines by 8.2 ka, and from then on sediment was delivered to the site primarily via the Antarctic Coastal and Slope Front Currents, largely through a suspended sediment load and erosion of the surrounding banks. Enhanced biogenic mass accumulation rates and primary production at 8.2 ka suggest onset of warmer climatic conditions, coincident with the mid-Holocene Climatic Optimum.  At ~4.5 ka, grain size distributions show a rapid increase in mud content coincident with a transient pulse of glacial meltwater and a sudden decrease in biogenic and terrigenous mass accumulation rates. The increased mud content is inferred to have been deposited under a reduced flow regime of the Antarctic Coastal and Slope Front Currents during the Neoglacial period that followed the final stages of deglaciation in the Ross Sea. It is hypothesised here that cessation of glacial retreat in the Ross Sea and the development of the modern day Ross Sea polynya resulted in enhanced Antarctic Surface Water production which led to increased sea ice growth in the Adélie Land region. The presence of sea ice led to reduced primary production and a decrease in the maximum current strength acting to advect coarser-sized terrigenous sediment to the core site during this time.  Sedimentation rates appear to have a strong correlation with the El Niño Southern Oscillation (ENSO) over the last 8.2 kyr, and are inferred to be related to changing sea ice extent and zonal wind strength. Light laminae counts (biogenic bloom events) appear to decrease in frequency during time intervals dominated by El Niño events. Spectral analysis of the greyscale values of core photographs reveals peaks in the 2-7 year band, known ENSO periods, which increase in frequency in the mid-and-late Holocene. Spectral analyses of the sand percent and natural gamma ray (NGR, a measure of clay mineral input) content of the core reveal peaks in the ~40-60, 200-300, 600, 1200-1600 and 2200-2400 year bands. The most significant of these cycles in the NGR data is in 40-60 year band may be related to internal mass balance dynamics of the Mertz Glacier or to the expansion and contraction of the Antarctic circumpolar vortex. Cycles in the 200-300 and 2200-2400 year bands are related to known periods of solar variability, which have previously been found to regulate primary productivity in Antarctic coastal waters. Cycles in the 590-625 and 1200-1600 year bands have a strong signal through the entire record and are common features of Holocene climatic records, however the origin of these cycles is still under debate between solar forcing and an independent mode of internal ocean oscillation.</p>


2021 ◽  
Author(s):  
Yu Wang ◽  
Bao-long Li ◽  
Juan-juan Liu ◽  
Qi Feng ◽  
Wei Liu ◽  
...  

Abstract Spatial variations in grain-size parameters can reflect river sediment transport patterns and depositional dynamics. Therefore, 22 surficial sediment samples taken from the Heihe River and its cascade reservoirs were analyzed to better understand the impact of cascade reservoir construction on sediment transport patterns in inland rivers in China. The results showed that the longitudinal distribution of sediment grain size in the Heihe River was significantly affected by the influence of the cascade reservoirs. The grain size of the reservoir sediments within the cascade reservoir system was much lower than that of sediments in the natural river section, and the sediments in the natural river were well sorted, exhibiting leptokurtosis and positive or very positive skew. The lower reaches of the dammed river experienced strong erosion, and the grains of the bed sediments were coarse and poorly sorted; the grain-size distributions were more positively skewed and exhibited leptokurtosis. The backwater zone of the reservoir was influenced by both backwater and released water, and the sediment grain size was between the grain size of the natural river and that of the lower reaches of the dam; these sediments were moderately well sorted and had a positively skewed, leptokurtic grain-size distribution. Sedimentary environmental analysis revealed that the characteristics of the sediment grain size in an upstream tributary of the Heihe River were more influenced by source material than by hydrodynamic conditions, while the grain-size characteristics of the mainstream sediments were controlled mainly by hydrodynamic conditions.


Sign in / Sign up

Export Citation Format

Share Document