Moisture and humidity dependence of the above-ground cosmic-ray neutron intensity

Author(s):  
Jannis Weimar ◽  
Markus Köhli ◽  
Martin Schrön ◽  
Ulrich Schmidt

<p>The novel method of Cosmic-ray neutron sensing (CRNS) allows non-invasive soil moisture measurements at a hectometer scaled footprint. Using this technique one can relate the flux density of albedo neutrons, generated in cosmic-ray induced air showers, to the amount of water within a radius of several hundred meters. In the recent years the understanding of neutron transport by Monte Carlo simulations led to major advancements in precision, which have successfully targeted a manifold of use cases. For example the improvements in the signal interpretation have meanwhile also been applied to the determination of snow water in Alpine regions. Up to now, the conversion of soil moisture to a detectable neutron count rate relies mainly on the equation presented by Desilets and Zreda. While in general a hyperbolic expression can be derived from theoretical considerations, their empiric parameterisation needs to be revised as many groups have found site-specific calibrations, which are simply based on different empirical data sets.</p><p>Investigating the above-ground neutron intensity by a broadly based Monte Carlo simulation campaign revealed a more detailed understanding of different contributions to this signal, especially targeting air humidity corrections. The packages MCNP and URANOS were used to derive a function able to describe the respective dependencies including the effect of different hydrogen pools and the sensor response function. The resulting formula significantly improves the soil-moisture-to-intensity conversion and allows for a more comprehensive instrument data quality, which especially closes the gap between observations of very dry and wet conditions.</p>

2021 ◽  
Author(s):  
Markus Köhli ◽  
Jannis Weimar ◽  
Benjamin Fersch ◽  
Roland Baatz ◽  
Martin Schrön ◽  
...  

<p>The novel method of Cosmic-ray neutron sensing (CRNS) allows non-invasive soil moisture measurements at a hectometer scaled footprint. Up to now, the conversion of soil moisture to a detectable neutron count rate relies mainly on the equation presented by Desilets et al. (2010). While in general a hyperbolic expression can be derived from theoretical considerations, their empiric parameterisation needs to be revised for two reasons. Firstly, a rigorous mathematical treatment reveals that the values of the four parameters are ambiguous because their values are not independent. We find a 3-parameter equation with unambiguous values of the parameters which is equivalent in any other respect to the 4-parameter equation. Secondly, high-resolution Monte-Carlo simulations revealed a systematic deviation of the count rate to soil moisture relation especially for extremely dry conditions as well as very humid conditions. That is a hint, that a smaller contribution to the intensity was forgotten or not adequately treated by the conventional approach. Investigating the above-ground neutron flux by a broadly based Monte-Carlo simulation campaign revealed a more detailed understanding of different contributions to this signal, especially targeting air humidity corrections. The packages MCNP and URANOS were used to derive a function able to describe the respective dependencies including the effect of different hydrogen pools and the detector-specific response function. The new relationship has been tested at three exemplary measurement sites and its remarkable performance allows for a promising prospect of more comprehensive data quality in the future.</p>


2013 ◽  
Vol 14 (5) ◽  
pp. 1659-1671 ◽  
Author(s):  
R. Rosolem ◽  
W. J. Shuttleworth ◽  
M. Zreda ◽  
T. E. Franz ◽  
X. Zeng ◽  
...  

Abstract The cosmic-ray method for measuring soil moisture, used in the Cosmic-Ray Soil Moisture Observing System (COSMOS), relies on the exceptional ability of hydrogen to moderate fast neutrons. Sources of hydrogen near the ground, other than soil moisture, affect the neutron measurement and therefore must be quantified. This study investigates the effect of atmospheric water vapor on the cosmic-ray probe signal and evaluates the fast neutron response in realistic atmospheric conditions using the neutron transport code Monte Carlo N-Particle eXtended (MCNPX). The vertical height of influence of the sensor in the atmosphere varies between 412 and 265 m in dry and wet atmospheres, respectively. Model results show that atmospheric water vapor near the surface affects the neutron intensity signal by up to 12%, corresponding to soil moisture differences on the order of 0.10 m3 m−3. A simple correction is defined to identify the true signal associated with integrated soil moisture that rescales the measured neutron intensity to that which would have been observed in the atmospheric conditions prevailing on the day of sensor calibration. Use of this approach is investigated with in situ observations at two sites characterized by strong seasonality in water vapor where standard meteorological measurements are readily available.


2021 ◽  
Vol 2 ◽  
Author(s):  
Markus Köhli ◽  
Jannis Weimar ◽  
Martin Schrön ◽  
Roland Baatz ◽  
Ulrich Schmidt

Investigations of neutron transport through air and soil by Monte Carlo simulations led to major advancements toward a precise interpretation of measurements; they particularly improved the understanding of the cosmic-ray neutron footprint. Up to now, the conversion of soil moisture to a detectable neutron count rate has relied mainly on the equation presented by Desilets and Zreda in 2010. While in general a hyperbolic expression can be derived from theoretical considerations, their empiric parameterization needs to be revised for two reasons. Firstly, a rigorous mathematical treatment reveals that the values of the four parameters are ambiguous because their values are not independent. We found a three-parameter equation with unambiguous values of the parameters that is equivalent in any other respect to the four-parameter equation. Secondly, high-resolution Monte-Carlo simulations revealed a systematic deviation of the count rate to soil moisture relation especially for extremely dry conditions as well as very humid conditions. That is a hint that a smaller contribution to the intensity was forgotten or not adequately treated by the conventional approach. Investigating the above-ground neutron flux through a broadly based Monte-Carlo simulation campaign revealed a more detailed understanding of different contributions to this signal, especially targeting air humidity corrections. The packages MCNP and URANOS were used to derive a function able to describe the respective dependencies, including the effect of different hydrogen pools and the detector-specific response function. The new relationship has been tested at two exemplary measurement sites, and its remarkable performance allows for a promising prospect of more comprehensive data quality in the future.


2017 ◽  
Author(s):  
Martin Schrön ◽  
Steffen Zacharias ◽  
Gary Womack ◽  
Markus Köhli ◽  
Darin Desilets ◽  
...  

Abstract. Sensor-to-sensor variability is a source of error common to all geoscientific instruments, which needs to be assessed before comparative and applied research can be performed with multiple sensors. Consistency among sensor systems is especially critical when the signal is an integral value that covers a large volume within complex, urban terrain. Cosmic-Ray Neutron Sensors (CRNS) are a recent technology that is used to monitor large-scale environmental water storages, for which a rigorous comparison study of numerous co-located sensors has never been performed. In this work, nine stationary CRNS probes of type CRS1000 were installed in relative proximity on a grass patch surrounded by complex urban terrain. While the dynamics of the neutron count rates were found to be similar, offsets of a few percent from the absolute average neutron count rates were found. Technical adjustments of the individual detection parameters brought all instruments into good agreement. Furthermore, the arrangement of multiple sensors allowed to find a critical integration time of 6 hours above which all sensors showed consistent dynamics in the data and their RMSE fell below 1 % of gravimetric water content. The residual differences between the nine signals indicated local effects of the complex urban terrain at the scale of several meters. Mobile CRNS measurements and spatial neutron transport simulations in the surrounding area (25 ha) have revealed that CRNS detectors are sensitive to sub-footprint heterogeneity despite their large averaging volume. The paved and sealed areas in the footprint furthermore damp the dynamics of the CRNS soil moisture product. We developed strategies to correct for the sealed-area effect based on theoretical insights about the spatial sensitivity of the sensor. This procedure not only led to reliable soil moisture estimation in drying periods, it further revealed a strong signal of interception and evaporation water that emerged over the sealed ground during and shortly after rain events. The presented arrangement offered a unique opportunity to demonstrate the CRNS performance in complex terrain, and the results indicate great potential for further applications in urban water sciences.


2018 ◽  
Vol 7 (1) ◽  
pp. 83-99 ◽  
Author(s):  
Martin Schrön ◽  
Steffen Zacharias ◽  
Gary Womack ◽  
Markus Köhli ◽  
Darin Desilets ◽  
...  

Abstract. Sensor-to-sensor variability is a source of error common to all geoscientific instruments that needs to be assessed before comparative and applied research can be performed with multiple sensors. Consistency among sensor systems is especially critical when subtle features of the surrounding terrain are to be identified. Cosmic-ray neutron sensors (CRNSs) are a recent technology used to monitor hectometre-scale environmental water storages, for which a rigorous comparison study of numerous co-located sensors has not yet been performed. In this work, nine stationary CRNS probes of type “CRS1000” were installed in relative proximity on a grass patch surrounded by trees, buildings, and sealed areas. While the dynamics of the neutron count rates were found to be similar, offsets of a few percent from the absolute average neutron count rates were found. Technical adjustments of the individual detection parameters brought all instruments into good agreement. Furthermore, we found a critical integration time of 6 h above which all sensors showed consistent dynamics in the data and their RMSE fell below 1 % of gravimetric water content. The residual differences between the nine signals indicated local effects of the complex urban terrain on the scale of several metres. Mobile CRNS measurements and spatial simulations with the URANOS neutron transport code in the surrounding area (25 ha) have revealed substantial sub-footprint heterogeneity to which CRNS detectors are sensitive despite their large averaging volume. The sealed and constantly dry structures in the footprint furthermore damped the dynamics of the CRNS-derived soil moisture. We developed strategies to correct for the sealed-area effect based on theoretical insights about the spatial sensitivity of the sensor. This procedure not only led to reliable soil moisture estimation during dry-out periods, it further revealed a strong signal of intercepted water that emerged over the sealed surfaces during rain events. The presented arrangement offered a unique opportunity to demonstrate the CRNS performance in complex terrain, and the results indicated great potential for further applications in urban climate research.


2016 ◽  
Author(s):  
Mie Andreasen ◽  
Karsten H. Jensen ◽  
Darin Desilets ◽  
Marek Zreda ◽  
Heye Bogena ◽  
...  

Abstract. Cosmic-ray neutron intensity is inversely correlated to all hydrogen present in the upper decimeters of the subsurface and the first few hectometers of the atmosphere above the ground surface. This method has been used for measuring soil moisture and snow water equivalent, but it may also be used to identify and quantify canopy interception and biomass. We use a neutron transport model with various representations of the forest and different parameters describing the subsurface to match measured profiles and time series of thermal and epithermal neutron intensities at a field site in Denmark. A sensitivity analysis is performed to quantify the effect of forest canopy representation, soil moisture, complexity of soil matrix chemistry, forest litter, soil bulk density, canopy interception and forest biomass on neutron intensity. The results show that forest biomass has a significant influence on the neutron intensity profiles at the examined field site, altering both the shape of the profiles and the ground level thermal-to-epithermal neutron ratio. The ground level thermal-to-epithermal neutron ratio increases significantly with increasing amounts of biomass and minor with canopy interception. Satisfactory agreement is found between measurements and model results at the forest site as well as two nearby sites representing agricultural and heathland ecosystems. The measured ground level thermal-to-epithermal neutron ratios of the three site range from around 0.56 to 0.82. The significantly smaller effect of canopy interception on the ground level thermal-to-epithermal neutron ratio was modeled to range from 0.804 to 0.836 for a forest with a dry and a very wet canopy (4 mm of canopy interception), respectively. At the examined field site the signal of the canopy interception is lower than the measurement uncertainty.


2020 ◽  
Vol 2 ◽  
Author(s):  
Jannis Jakobi ◽  
Johan A. Huisman ◽  
Martin Schrön ◽  
Justus Fiedler ◽  
Cosimo Brogi ◽  
...  

Cosmic ray neutron (CRN) sensing allows for non-invasive soil moisture measurements at the field scale and relies on the inverse correlation between aboveground measured epithermal neutron intensity (1 eV−100 keV) and environmental water content. The measurement uncertainty follows Poisson statistics and thus increases with decreasing neutron intensity, which corresponds to increasing soil moisture. In order to reduce measurement uncertainty, the neutron count rate is usually aggregated over 12 or 24 h time windows for stationary CRN probes. To obtain accurate soil moisture estimates with mobile CRN rover applications, the aggregation of neutron measurements is also necessary and should consider soil wetness and driving speed. To date, the optimization of spatial aggregation of mobile CRN observations in order to balance measurement accuracy and spatial resolution of soil moisture patterns has not been investigated in detail. In this work, we present and apply an easy-to-use method based on Gaussian error propagation theory for uncertainty quantification of soil moisture measurements obtained with CRN sensing. We used a 3rd order Taylor expansion for estimating the soil moisture uncertainty from uncertainty in neutron counts and compared the results to a Monte Carlo approach with excellent agreement. Furthermore, we applied our method with selected aggregation times to investigate how CRN rover survey design affects soil moisture estimation uncertainty. We anticipate that the new approach can be used to improve the strategic planning and evaluation of CRN rover surveys based on uncertainty requirements.


2013 ◽  
Vol 17 (2) ◽  
pp. 453-460 ◽  
Author(s):  
T. E. Franz ◽  
M. Zreda ◽  
R. Rosolem ◽  
T. P. A. Ferre

Abstract. A cosmic-ray soil moisture probe is usually calibrated locally using soil samples collected within its support volume. But such calibration may be difficult or impractical, for example when soil contains stones, in presence of bedrock outcrops, in urban environments, or when the probe is used as a rover. Here we use the neutron transport code MCNPx with observed soil chemistries and pore water distribution to derive a universal calibration function that can be used in such environments. Reasonable estimates of pore water content can be made from neutron intensity measurements and by using measurements of the other hydrogen pools (water vapor, soil lattice water, soil organic carbon, and biomass). Comparisons with independent soil moisture measurements at one cosmic-ray probe site and, separately, at 35 sites, show that the universal calibration function explains more than 79% of the total variability within each dataset, permitting accurate isolation of the soil moisture signal from the measured neutron intensity signal. In addition the framework allows for any of the other hydrogen pools to be separated from the neutron intensity measurements, which may be useful for estimating changes in biomass, biomass water, or exchangeable water in complex environments.


2017 ◽  
Vol 21 (4) ◽  
pp. 1875-1894 ◽  
Author(s):  
Mie Andreasen ◽  
Karsten H. Jensen ◽  
Darin Desilets ◽  
Marek Zreda ◽  
Heye R. Bogena ◽  
...  

Abstract. Cosmic-ray neutron intensity is inversely correlated to all hydrogen present in the upper decimeters of the subsurface and the first few hectometers of the atmosphere above the ground surface. This correlation forms the base of the cosmic-ray neutron soil moisture estimation method. The method is, however, complicated by the fact that several hydrogen pools other than soil moisture affect the neutron intensity. In order to improve the cosmic-ray neutron soil moisture estimation method and explore the potential for additional applications, knowledge about the environmental effect on cosmic-ray neutron intensity is essential (e.g., the effect of vegetation, litter layer and soil type). In this study the environmental effect is examined by performing a sensitivity analysis using neutron transport modeling. We use a neutron transport model with various representations of the forest and different parameters describing the subsurface to match measured height profiles and time series of thermal and epithermal neutron intensities at a field site in Denmark. Overall, modeled thermal and epithermal neutron intensities are in satisfactory agreement with measurements; however, the choice of forest canopy conceptualization is found to be significant. Modeling results show that the effect of canopy interception, soil chemistry and dry bulk density of litter and mineral soil on neutron intensity is small. On the other hand, the neutron intensity decreases significantly with added litter-layer thickness, especially for epithermal neutron energies. Forest biomass also has a significant influence on the neutron intensity height profiles at the examined field site, altering both the shape of the profiles and the ground-level thermal-to-epithermal neutron ratio. This ratio increases with increasing amounts of biomass, and was confirmed by measurements from three sites representing agricultural, heathland and forest land cover. A much smaller effect of canopy interception on the ground-level thermal-to-epithermal neutron ratio was modeled. Overall, the results suggest a potential to use ground-level thermal-to-epithermal neutron ratios to discriminate the effect of different hydrogen contributions on the neutron signal.


2015 ◽  
Vol 19 (7) ◽  
pp. 3203-3216 ◽  
Author(s):  
J. Iwema ◽  
R. Rosolem ◽  
R. Baatz ◽  
T. Wagener ◽  
H. R. Bogena

Abstract. The Cosmic-Ray Neutron Sensor (CRNS) can provide soil moisture information at scales relevant to hydrometeorological modelling applications. Site-specific calibration is needed to translate CRNS neutron intensities into sensor footprint average soil moisture contents. We investigated temporal sampling strategies for calibration of three CRNS parameterisations (modified N0, HMF, and COSMIC) by assessing the effects of the number of sampling days and soil wetness conditions on the performance of the calibration results while investigating actual neutron intensity measurements, for three sites with distinct climate and land use: a semi-arid site, a temperate grassland, and a temperate forest. When calibrated with 1 year of data, both COSMIC and the modified N0 method performed better than HMF. The performance of COSMIC was remarkably good at the semi-arid site in the USA, while the N0mod performed best at the two temperate sites in Germany. The successful performance of COSMIC at all three sites can be attributed to the benefits of explicitly resolving individual soil layers (which is not accounted for in the other two parameterisations). To better calibrate these parameterisations, we recommend in situ soil sampled to be collected on more than a single day. However, little improvement is observed for sampling on more than 6 days. At the semi-arid site, the N0mod method was calibrated better under site-specific average wetness conditions, whereas HMF and COSMIC were calibrated better under drier conditions. Average soil wetness condition gave better calibration results at the two humid sites. The calibration results for the HMF method were better when calibrated with combinations of days with similar soil wetness conditions, opposed to N0mod and COSMIC, which profited from using days with distinct wetness conditions. Errors in actual neutron intensities were translated to average errors specifically to each site. At the semi-arid site, these errors were below the typical measurement uncertainties from in situ point-scale sensors and satellite remote sensing products. Nevertheless, at the two humid sites, reduction in uncertainty with increasing sampling days only reached typical errors associated with satellite remote sensing products. The outcomes of this study can be used by researchers as a CRNS calibration strategy guideline.


Sign in / Sign up

Export Citation Format

Share Document