Quantification of biogeomorphic interactions between small-scale sediment transport and primary succession in the Gepatschferner glacier foreland, Austria

Author(s):  
Stefan Haselberger ◽  
Lisa Maria Ohler ◽  
Robert R. Junker ◽  
Jan-Christoph Otto ◽  
Sabine Kraushaar

<p>Landscape change is an interplay of abiotic and biotic processes with bi-directional and interwoven relationships. Glacier foreland areas can act as open-air laboratory to observe biogeomorphic interactions. Paraglacial adjustment establishes initial conditions for ecological succession and requires constant feedbacks between plants and landscapes. Frequency and magnitude of geomorphic processes and functional composition and abundance of plants govern these responses. Up to now, biogeomorphic studies have mainly focused on the qualitative description of the relationship between biotic and abiotic processes. However, in order to test biogeomorphic concepts, it is necessary to jointly quantify (i) geomorphic process rates as a function of vegetation and (ii) successional development as a function of geomorphic conditions.</p><p>The proglacial area of the Gepatschferner (Kaunertal) in the crystalline Central Eastern Alps presents a showcase environment to investigate these interactions as the retreating glacier and highly active slope processes provide the ground for different stages of ecological succession and promotes high rates of sediment reworking within the proglacial deposits.</p><p>In this particular study, we investigate small-scale biogeomorphic interactions at 30 test sites of 2*3m size. Experimental plots are established on slopes along an ecological succession gradient that reflect different stages of erosion-vegetation interaction. To cover the abiotic condition for the plot sites morphometric characteristics and edaphic variables were determined. In order to quantify abiotic process rates, we use mechanical measurements (i.e. erosion plots) to determine sediment yield and to measure the effect of vegetation on particle size distribution. Relative Dating, historical image analysis and knowledge of glacial retreat helped to estimate time since last perturbation. A detailed vegetation survey was carried out to capture biotic conditions at the sites. Species distribution and abundance at each site, as well as plant functional types provide information on successional stage and functional diversity.</p><p>This data set provides a vital opportunity to test conceptual models on biogeomorphic succession in glacier forelands and to evaluate the bi-directional influence of primary succession on small-scale sediment transport and vice versa.</p>

Author(s):  
K M Ahtesham Hossain Raju ◽  
Shinji Sato

Response of sand dune when overwashed by tsunami or storm surge, is investigated by conducting small scale laboratory study. Dune consisting of initially wet sand and initially dry sand are tested for three different sand grain sizes. Overtopping of water and the corresponding sediment transport are analyzed. These data set can be used to validate mathematical models associated with dune sediment transport as well as prediction of dune profile.


2020 ◽  
Author(s):  
Robert Wells ◽  
Yafei Jia ◽  
Henrique Momm ◽  
Carlos Castillo ◽  
Dalmo Vieira ◽  
...  

<p>Soil erosion due to rainfall and overland flow can be detrimental to agricultural management and long-term agricultural sustainability. Although numerous conservation measures and planning strategies have greatly reduced the amount of sediment moving within the landscape, there are still unresolved questions concerning initiation of particle motion, susceptibility to erosion, total soil loss, sediment transport and general measurement theory. Within agricultural fields, ephemeral erosion is particularly harmful because these sources can accelerate sediment transport, often yield more sediment than interrill sources and are more challenging to mitigate. In this study, terrain data were collected by aerial photogrammetry using an unmanned aerial system (UAS) following planting and approximately one month later, while climate variables during the period were collected using NexRad radar. Imagery was captured within seven agricultural fields (six in Iowa and one in Minnesota), ranging in size from 0.6 to 3.6 hectare (1.6 to 8.8 acre). Considering the small scale in topographic variation between two surveys, extreme efforts were applied to image processing and geospatial registration. Advanced models for camera calibration utilizing Micmac open-source photogrammetry software package were used to account for complex distortion patterns in the raw image data set. The undistorted images were then processed using Agisoft Photoscan for camera alignment, model georeferencing and dense point cloud generation (millions to billions of points per survey), from which digital elevation models (DEMs; 10 to 57 million cells) were produced. A physically-based finite element hydrodynamic and sediment transport model (CCHE2D, developed at the National Center for Computational Hydroscience and Engineering) was applied to simulate hydrological (runoff), sediment detachment (raindrop splash, sheet flow, and concentrated flow erosion) and sediment transport/deposition landscape evolution processes. Simulated geomorphological and sediment budget results over time were compared to field observations for model input parameter adjustment and consequently quantification of estimates. Integration of high-resolution spatial and temporal topographic measurements with physically-based numerical models support the development and validation of dynamic landscape evolution models needed for accurate prediction and quantification of gully initiation, evolution and impact on total soil loss and effective conservation management planning.</p>


2021 ◽  
Vol 503 (2) ◽  
pp. 2688-2705
Author(s):  
C Doux ◽  
E Baxter ◽  
P Lemos ◽  
C Chang ◽  
A Alarcon ◽  
...  

ABSTRACT Beyond ΛCDM, physics or systematic errors may cause subsets of a cosmological data set to appear inconsistent when analysed assuming ΛCDM. We present an application of internal consistency tests to measurements from the Dark Energy Survey Year 1 (DES Y1) joint probes analysis. Our analysis relies on computing the posterior predictive distribution (PPD) for these data under the assumption of ΛCDM. We find that the DES Y1 data have an acceptable goodness of fit to ΛCDM, with a probability of finding a worse fit by random chance of p = 0.046. Using numerical PPD tests, supplemented by graphical checks, we show that most of the data vector appears completely consistent with expectations, although we observe a small tension between large- and small-scale measurements. A small part (roughly 1.5 per cent) of the data vector shows an unusually large departure from expectations; excluding this part of the data has negligible impact on cosmological constraints, but does significantly improve the p-value to 0.10. The methodology developed here will be applied to test the consistency of DES Year 3 joint probes data sets.


Author(s):  
Davide Bonaldo ◽  
Alvise Benetazzo ◽  
Andrea Bergamasco ◽  
Francesco Falcieri ◽  
Sandro Carniel ◽  
...  

AbstractThe shallow, gently sloping, sandy-silty seabed of the Venetian coast (Italy) is studded by a number of outcropping rocky systems of different size encouraging the development of peculiar zoobenthic biocenoses with considerably higher biodiversity indexes compared to neighbouring areas. In order to protect and enhance the growth of settling communities, artificial monolithic reefs were deployed close to the most important formations, providing further nesting sites and mechanical hindrance to illegal trawl fishing.In this framework, a multi-step and multi-scale numerical modelling activity was carried out to predict the perturbations induced by the presence of artificial structures on sediment transport over the outcroppings and their implications on turbidity and water quality. After having characterized wave and current circulation climate at the sub-basin scale over a reference year, a set of small scale simulations was carried out to describe the effects of a single monolith under different geometries and hydrodynamic forcings, encompassing the conditions likely occurring at the study sites. A dedicated tool was then developed to compose the information contained in the small-scale database into realistic deployment configurations, and applied in four protected outcroppings identified as test sites. With reference to these cases, under current meteomarine climate the application highlighted a small and localised increase in suspended sediment concentration, suggesting that the implemented deployment strategy is not likely to produce harmful effects on turbidity close to the outcroppings.In a broader context, the activity is oriented at the tuning of a flexible instrument for supporting the decision-making process in benthic environments of outstanding environmental relevance, especially in the Integrated Coastal Zone Management or Maritime Spatial Planning applications. The dissemination of sub-basin scale modelling results via the THREDDS Data Server, together with an user-friendly software for composing single-monolith runs and a graphical interface for exploring the available data, significantly improves the quantitative information collection and sharing among scientists, stakeholders and policy-makers.


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
Amit Seta ◽  
Pallavi Bhat ◽  
Kandaswamy Subramanian

Zeldovich’s stretch–twist–fold (STF) dynamo provided a breakthrough in conceptual understanding of fast dynamos, including the small-scale fluctuation dynamos. We study the evolution and saturation behaviour of two types of generalized Baker’s map dynamos, which have been used to model Zeldovich’s STF dynamo process. Using such maps allows one to analyse dynamos at much higher magnetic Reynolds numbers $\mathit{Re}_{M}$ as compared to direct numerical simulations. In the two-strip map dynamo there is constant constructive folding, while the four-strip map dynamo also allows the possibility of a destructive reversal of the field. Incorporating a diffusive step parametrized by $\mathit{Re}_{M}$ into the map, we find that the magnetic field $B(x)$ is amplified only above a critical $\mathit{Re}_{M}=R_{\mathit{crit}}\sim 4$ for both types of dynamos. The growing $B(x)$ approaches a shape-invariant eigenfunction independent of initial conditions, whose fine structure increases with increasing $\mathit{Re}_{M}$. Its power spectrum $M(k)$ displays sharp peaks reflecting the fractal nature of $B(x)$ above the diffusive scale. We explore the saturation of these dynamos in three ways: via a renormalized reduced effective $\mathit{Re}_{M}$ (case I) or due to a decrease in the efficiency of the field amplification by stretching, without changing the map (case IIa), or changing the map (case IIb), and a combination of both effects (case III). For case I, we show that $B(x)$ in the saturated state, for both types of maps, approaches the marginal eigenfunction, which is obtained for $\mathit{Re}_{M}=R_{\mathit{crit}}$ independent of the initial $\mathit{Re}_{M}=R_{M0}$. On the other hand, in case II, for the two-strip map, we show that $B(x)$ saturates, preserving the structure of the kinematic eigenfunction. Thus the energy is transferred to larger scales in case I but remains at the smallest resistive scales in case II, as can be seen from both $B(x)$ and $M(k)$. For the four-strip map, $B(x)$ oscillates with time, although with a structure similar to the kinematic eigenfunction. Interestingly, the saturated state in case III shows an intermediate behaviour, with $B(x)$ similar to the kinematic eigenfunction at an intermediate $\mathit{Re}_{M}=R_{\mathit{sat}}$, with $R_{M0}>R_{\mathit{sat}}>R_{\mathit{crit}}$. The $R_{\mathit{sat}}$ value is determined by the relative importance of the increased diffusion versus the reduced stretching. These saturation properties are akin to the range of possibilities that have been discussed in the context of fluctuation dynamos.


2021 ◽  
Author(s):  
Süleyman UZUN ◽  
Sezgin KAÇAR ◽  
Burak ARICIOĞLU

Abstract In this study, for the first time in the literature, identification of different chaotic systems by classifying graphic images of their time series with deep learning methods is aimed. For this purpose, a data set is generated that consists of the graphic images of time series of the most known three chaotic systems: Lorenz, Chen, and Rossler systems. The time series are obtained for different parameter values, initial conditions, step size and time lengths. After generating the data set, a high-accuracy classification is performed by using transfer learning method. In the study, the most accepted deep learning models of the transfer learning methods are employed. These models are SqueezeNet, VGG-19, AlexNet, ResNet50, ResNet101, DenseNet201, ShuffleNet and GoogLeNet. As a result of the study, classification accuracy is found between 96% and 97% depending on the problem. Thus, this study makes association of real time random signals with a mathematical system possible.


Author(s):  
Eddy Mantjoro

Abstract Goals to be achieved through this research are as follows: (1) the scientific explanation about the initial conditions of fishing effort in the area of ​​research in this area is South Minahasa; (2) To obtain information on the historical development of the fish processing industry in North Sulawesi and Minahasa south in particular; (3) To be informed of the obstacles and challenges faced by the fisheries sector investors, especially fish processing timber. This research focuses on one unit of the fish processing industry wooden fish processing plant, and then in the case study method is relevant. The case study method is expected that researchers can examine more detailed and focused on problems experienced by fish processing company. As a consequence the results can not be generalized as like which would otherwise require science. Unless some case studies on the same topic on other companies and the result is the same, the efforts generalizations can be made. However the results of the case study can paint a picture on the history, constraints and barriers to investment that occur in similar industries and other industries. The initial condition of fisheries business investment in South Minahasa in 1995 was still dominated by small-scale businesses, which is limited to household livelihoods of fishermen. How governance is still very traditional in terms of business objectives just to meet daily food needs. Wooden fish processing technology already existed and developed since the year 700 BC in Japan. In Indonesia, especially in North Sulawesi started introduced in 1927 by a Japanese man named Hara Ko. The new investment started in 1971 until now. Investment in fish processing faces many obstacles and challenges, namely (1) the limited market share, (2) Legal certainty is not guaranteed, (3) Investors from outside the region and abroad to invest by holding on minimal information about the culture and traditions of local communities (4 ) morale of local residents very traditional if not arguably worse. (5) The investment policy is supported by the local government level only at the Regent while Assiten level, down to the village more displays of terror and intimidation to investors. Keywords: fish factory, investment, history, constraints, obstacles Abstrak Tujuan yang ingin dicapai melalui penelitian ini ialah sebagai berikut: (1) Penjelasan ilmiah tentang kondisi awal usaha perikanan di wilayah penelitian dalam hal ini Daerah Minahasa Selatan. (2) Memperoleh informasi tentang sejarah perkembangan industri pengolahan ikan di Sulawesi Utara dan Minahasa selatan khususnya. (3) Mendapatkan informasi mengenai kendala dan tantangan yang dihadapi oleh investor bidang perikanan khususnya pengolahan ikan kayu. Penelitian ini berfokus pada satu unit industri pengolahan ikan yakni pabrik pengolahan ikan kayu, maka metode studi kasus di pandang relevan. Metode studi kasus diharapkan peneliti dapat mengkaji lebih rinci dan fokus pada masalah yang dialami oleh perusahan pengolahan ikan. Sebagai konsekwensinya hasil penelitian tidak dapat digeneralisir sebagai layaknya yang di syaratkan oleh ilmu pengetahuan. Kecuali beberapa studi kasus dengan topik yang sama pada perusahan lain dan hasilnya sama maka upaya generalisasi dapat dilakukan. Walau demikian hasil studi kasus dapat melukiskan gambaran mengenai sejarah, kendala dan hambatan investasi yang terjadi pada industri sejenis dan industri lainnya. Kondisi awal usaha perikanan di wilayah Minahasa selatan pada tahun 1995 ketika investasi pabrik pengolahan ikan kayu di mulai masih didominasi oleh usaha skala kecil, yaitu sebatas mata pencaharian rumah tangga nelayan. Cara kelola pun masih sangat tradisional dalam pengertian tujuan usaha hanya untuk memenuhi kebutuhan makanan harian. Teknologi pengolahan ikan kayu sudah ada dan berkembang sejak tahun 700 sebelum masehi di Jepang. Di Indonesia khususnya di Sulawesi Utara mulai di perkenalkan pada tahun 1927 oleh orang Jepang bernama Hara Ko. Investasi baru dimulai pada tahun 1971 hingga sekarang. Investasi bidang pengolahan ikan menghadapi banyak kendala dan tantangan, yaitu (1) keterbatasan pangsa pasar, (2) Kepastian hukum tidak terjamin, (3) Investor dari luar daerah dan luar negeri berinvestasi dengan berpegang pada informasi minim mengenai budaya dan tradisi masyarakat lokal (4) moral kerja penduduk lokal amat tradisional jika tidak boleh dikatakan buruk.(5) Kebijakan investasi ditunjang oleh pemerintah daerah hanya pada level Bupati sedangkan level assiten, ke bawah sampai kelurahan lebih banyak menampilkan teror dan intimidasi kepada investor. Kata Kunci : pabrik ikan, investasi, sejarah, kendala, hambatan


2021 ◽  
Vol 8 ◽  
Author(s):  
Kaveh Purkiani ◽  
Benjamin Gillard ◽  
André Paul ◽  
Matthias Haeckel ◽  
Sabine Haalboom ◽  
...  

Predictability of the dispersion of sediment plumes induced by potential deep-sea mining activities is still very limited due to operational limitations on in-situ observations required for a thorough validation and calibration of numerical models. Here we report on a plume dispersion experiment carried out in the German license area for the exploration of polymetallic nodules in the northeastern tropical Pacific Ocean in 4,200 m water depth. The dispersion of a sediment plume induced by a small-scale dredge experiment in April 2019 was investigated numerically by employing a sediment transport module coupled to a high-resolution hydrodynamic regional ocean model. Various aspects including sediment characteristics and ocean hydrodynamics were examined to obtain the best statistical agreement between sensor-based observations and model results. Results show that the model is capable of reproducing suspended sediment concentration and redeposition patterns observed during the dredge experiment. Due to a strong southward current during the dredging, the model predicts no sediment deposition and plume dispersion north of the dredging tracks. The sediment redeposition thickness reaches up to 9 mm directly next to the dredging tracks and 0.07 mm in about 320 m away from the dredging center. The model results suggest that seabed topography and variable sediment release heights above the seafloor cause significant changes especially for the low sedimentation pattern in the far-field area. Near-bottom mixing is expected to strongly influence vertical transport of suspended sediment.


2020 ◽  
Author(s):  
Mieke Kuschnerus ◽  
Roderik Lindenbergh ◽  
Sander Vos

Abstract. Sandy coasts are constantly changing environments governed by complex interacting processes. Permanent laser scanning is a promising technique to monitor such coastal areas and support analysis of geomorphological deformation processes. This novel technique delivers 3D representations of a part of the coast at hourly temporal and centimetre spatial resolution and allows to observe small scale changes in elevation over extended periods of time. These observations have the potential to improve understanding and modelling of coastal deformation processes. However, to be of use to coastal researchers and coastal management, an efficient way to find and extract deformation processes from the large spatio-temporal data set is needed. In order to allow data mining in an automated way, we extract time series in elevation or range and use unsupervised learning algorithms to derive a partitioning of the observed area according to change patterns. We compare three well known clustering algorithms, k-means, agglomerative clustering and DBSCAN, and identify areas that undergo similar evolution during one month. We test if they fulfil our criteria for a suitable clustering algorithm on our exemplary data set. The three clustering methods are applied to time series of 30 epochs (during one month) extracted from a data set of daily scans covering a part of the coast at Kijkduin, the Netherlands. A small section of the beach, where a pile of sand was accumulated by a bulldozer is used to evaluate the performance of the algorithms against a ground truth. The k-means algorithm and agglomerative clustering deliver similar clusters, and both allow to identify a fixed number of dominant deformation processes in sandy coastal areas, such as sand accumulation by a bulldozer or erosion in the intertidal area. The DBSCAN algorithm finds clusters for only about 44 % of the area and turns out to be more suitable for the detection of outliers, caused for example by temporary objects on the beach. Our study provides a methodology to efficiently mine a spatio-temporal data set for predominant deformation patterns with the associated regions, where they occur.


2018 ◽  
Vol 78 (5) ◽  
pp. 592-610 ◽  
Author(s):  
Abbas Ali Chandio ◽  
Yuansheng Jiang ◽  
Feng Wei ◽  
Xu Guangshun

Purpose The purpose of this paper is to evaluate the impact of short-term loan (STL) vs long-term loan (LTL) on wheat productivity of small farms in Sindh, Pakistan. Design/methodology/approach The econometric estimation is based on cross-sectional data collected in 2016 from 18 villages in three districts, i.e. Shikarpur, Sukkur and Shaheed Benazirabad, Sindh, Pakistan. The sample data set consist of 180 wheat farmers. The collected data were analyzed through different econometric techniques like Cobb–Douglas production function and Instrumental variables (two-stage least squares) approach. Findings This study reconfirmed that agricultural credit has a positive and highly significant effect on wheat productivity, while the short-term loan has a stronger effect on wheat productivity than the long-term loan. The reasons behind the phenomenon may be the significantly higher usage of agricultural inputs like seeds of improved variety and fertilizers which can be transformed into the wheat yield in the same year. However, the LTL users have significantly higher investments in land preparation, irrigation and plant protection, which may lead to higher wheat production in the coming years. Research limitations/implications In the present study, only those wheat farmers were considered who obtained agricultural loans from formal financial institutions like Zarai Taraqiati Bank Limited and Khushhali Bank. However, in the rural areas of Sindh, Pakistan, a considerable proportion of small-scale farmers take credit from informal financial channels. Therefore future researchers should consider the informal credits as well. Originality/value This is the first paper to examine the effects of agricultural credit on wheat productivity of small farms in Sindh, Pakistan. This paper will be an important addition to the emerging literature regarding effects of credit studies.


Sign in / Sign up

Export Citation Format

Share Document