Tracer Design and Gas Monitoring of a CO2 Injection Experiment at the ECCSEL CO2 Field Lab, Svelvik, Norway

Author(s):  
Ulrich Wolfgang Weber ◽  
Katja Heeschen ◽  
Martin Zimmer ◽  
Martin Raphaug ◽  
Klaus Hagby ◽  
...  

<p>The ECCSEL Svelvik CO<sub>2</sub> Field Lab outside Oslo has been set up for water and CO<sub>2</sub> injection experiments. At the site, ongoing and future investigations on monitoring techniques for carbon capture and storage (CCS) shall support the development of CCS as a climate change mitigation technology in Norway.</p><p>In 2019, four 100 m deep injection wells with a sophisticated physical monitoring setup were established. For chemical monitoring a fluid sampling system at injection depth was installed and coupled to a continuously measuring mass spectrometer for observing CO<sub>2</sub> distribution. Alongside, a network of soil gas flux chambers (LI-COR 8100) were set up to monitor possible surface leakages.</p><p>The field lab is placed in a sand quarry within the Svelvik Ridge consisting of Holocene, siliciclastic sediments. Injection is conducted into a saltwater aquifer at 65m, supposedly sealed by clay strata. We sampled the upper fresh water aquifer at 6.5m depth and the storage aquifer at 64 - 65 m depth on dissolved gases before injection in order to design a noble gas tracer for the CO<sub>2</sub> injection experiment. Elevated helium concentrations in the saline aquifer indicate natural radiogenic accumulation; meanwhile krypton concentrations were not naturally increased.</p><p>During an injection experiment in fall 2019, we added noble gases, i.e. krypton and helium, in two subsequent injection cycles, three days and one week, respectively. Outgassing was observed and high helium concentrations verified a leakage at the injection well, which we quantified with a flux chamber.</p>

2021 ◽  
Author(s):  
Mahesh S. Picha ◽  
M. Azuan B. Abu Bakar ◽  
Parimal A. Patil ◽  
Faiz A. Abu Bakar ◽  
Debasis P. Das ◽  
...  

Abstract Oil & Gas Operators are focusing on zero carbon emission to comply with government's changing rules and regulations, which play an important role in the encouragement of carbon capture initiatives. This paper aims to give insights on the world's first offshore CCS project in carbonate reservoir, where wells will be drilled to inject CO2, and store produced CO2 from contaminated fields. To safeguard the storage containment, the integrity of all wells needs to be scrutinized. Development wells in the identified depleted gas field are more than 40 years old and were not designed with consideration of high CO2 concentration in the reservoir. In consequence, the possibility of well leakage due to accelerated corrosion channeling and cracks, along the wellbore cannot be ignored and require careful evaluation. Rigorous process has been adopted in assessing the feasibility for converting existing gas producers into CO2 injectors. The required defined basis of designs for gas producer and CO2 injection wells differs in a great extent and this governs the re-usability of wells for CO2 injection or necessity to be abandoned. Three (3) new CO2 injectors with fat to slim design approach, corrosion resistant alloy (CRA) material and CO2 resistant cement are designed in view to achieve lifecycle integrity. Optimum angle of 53 deg and maintaining the injection pressure of 50 bar at 90 MSCFD rate is required for the injection of supercritical CO2 for 20 years. During well execution, challenges such as anti-collision risk, total loss scenarios while drilling in Carbonate reservoir need to be addressed before execution. The completion design is also focusing on having minimal number of completion jewelries to reduce pressure differential and potential leak paths from tubing hangar down to the end of lower completion. The selection of downhole safety valve (TRSV) type is of high importance to accommodate CO2 phase attributes at different pressure/temperature. Fiber Optic is included for monitoring the migration of CO2 plume by acquiring seismic survey and for well integrity by analyzing DAS/DTS data.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6456
Author(s):  
Ewa Knapik ◽  
Katarzyna Chruszcz-Lipska

Worldwide experiences related to geological CO2 storage show that the process of the injection of carbon dioxide into depleted oil reservoirs (CCS-EOR, Carbon Capture and Storage—Enhanced Oil Recovery) is highly profitable. The injection of CO2 will allow an increasing recovery factor (thus increasing CCS process profitability) and revitalize mature reservoirs, which may lead to oil spills due to pressure buildups. In Poland, such a solution has not yet been implemented in the industry. This work provides additional data for analysis of the possibility of the CCS-EOR method’s implementation for three potential clusters of Polish oil reservoirs located at a short distance one from another. The aim of the work was to examine the properties of reservoir fluids for these selected oil reservoirs in order to assure a better understanding of the physicochemical phenomena that accompany the gas injection process. The chemical composition of oils was determined by gas chromatography. All tested oils represent a medium black oil type with the density ranging from 795 to 843 g/L and the viscosity at 313 K, varying from 1.95 to 5.04 mm/s. The content of heavier components C25+ is up to 17 wt. %. CO2–oil MMP (Minimum Miscibility Pressure) was calculated in a CHEMCAD simulator using the Soave–Redlich–Kwong equation of state (SRK EoS). The oil composition was defined as a mixture of n-alkanes. Relatively low MMP values (ca. 8.3 MPa for all tested oils at 313 K) indicate a high potential of the EOR method, and make this geological CO2 storage form more attractive to the industry. For reservoir brines, the content of the main ions was experimentally measured and CO2 solubility under reservoir conditions was calculated. The reservoir brines showed a significant variation in properties with total dissolved solids contents varying from 17.5 to 378 g/L. CO2 solubility in brines depends on reservoir conditions and brine chemistry. The highest calculated CO2 solubility is 1.79 mol/kg, which suggest possible CO2 storage in aquifers.


2020 ◽  
Vol 8 ◽  
Author(s):  
Yuji Sano ◽  
Takanori Kagoshima ◽  
Naoto Takahata ◽  
Kotaro Shirai ◽  
Jin-Oh Park ◽  
...  

Carbon capture and storage (CCS) is considered a key technology for reducing CO2 emissions into the atmosphere. Nonetheless, there are concerns that if injected CO2 migrates in the crust, it may trigger slip of pre-existing faults. In order to test if this is the case, covariations of carbon, hydrogen, and oxygen isotopes of groundwater measured from Uenae well, southern Hokkaido, Japan are reported. This well is located 13 km away from the injection point of the Tomakomai CCS project and 21 km from the epicenter of September 6th, 2018 Hokkaido Eastern Iburi earthquake (M 6.7). Carbon isotope composition was constant from June 2015 to February 2018, and decreased significantly from April 2018 to November 2019, while total dissolved inorganic carbon (TDIC) content showed a corresponding increase. A decrease in radiocarbon and δ13C values suggests aquifer contamination by anthropogenic carbon, which could possibly be attributable to CCS-injected CO2. If such is the case, the CO2 enriched fluid may have initially migrated through permeable channels, blocking the fluid flow from the source region, increasing pore pressure in the focal region and triggering the natural earthquake where the brittle crust is already critically stressed.


2021 ◽  
Vol 345 ◽  
pp. 00011
Author(s):  
Ondřej Bartoš ◽  
Matěj Hrnčíř

An aim of the paper is to show recent data obtained from a new experimental set-up build for the production of the CO2 gas hydrates. The purpose of the experimental set-up is to analyse the practical aspects of the transformation gaseous CO2 to the hydrates. The deserving effort to decrease impacts of the global warming is containing the more questionable attempt to capture the CO2 produced within the electricity production and to avoid a releasing to the atmosphere. The storage in the form of the gas hydrates present an alternative way to more known technologies involved in the projects of CCS (Carbon Capture and Storage). The production of the gas hydrate is observed in the set-up with simultaneously acquired data of state condition close to the phase boundary. The presented work has two goals, first is the estimation of the transformation efficiency of the CO2 to the hydrates in compare with the theory and second goal is obtaining of the data for new CO2 hydrates production set-up with liquid circulation and possibility to separate pure hydrate. The experimental analysis of the gas hydrates production process can help to estimate the practical aspects of the hydrates production for a possibility of CO2 storage in this form.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4211
Author(s):  
Timofey Eltsov ◽  
Tadeusz W. Patzek

The non-corrosive, electrically resistive fiberglass casing materials may improve the economics of oil and gas field projects. At moderate temperatures (<120 °C), fiberglass casing is superior to carbon steel casing in applications that involve wet CO2 injection and/or production, such as carbon capture and storage, and CO2-based enhanced oil recovery (EOR) methods. Without a perfect protective cement shell, carbon steel casing in contact with a concentrated formation brine corrodes and the fiberglass casing is superior again. Fiberglass casing enables electromagnetic logging for exploration and reservoir monitoring, but it requires the development of new logging methods. Here we present a technique for the detection of integrity of magnetic cement behind resistive fiberglass casing. We demonstrate that an optimized induction logging tool can detect small changes in the magnetic permeability of cement through a non-conductive casing in a vertical (or horizontal) well. We determine both the integrity and solidification state of the cement-filled annulus behind the casing. Changes in magnetic permeability influence mostly the real part of the vertical component of the magnetic field. The signal amplitude is more sensitive to a change in the magnetic properties of the cement, rather than the signal phase. Our simulations showed that optimum separation between the transmitter and receiver coils ranged from 0.25 to 0.6 m, and the most suitable magnetic field frequencies varied from 0.1 to 10 kHz. A high-frequency induction probe operating at 200 MHz can measure the degree of solidification of cement. The proposed method can detect borehole cracks filled with cement, incomplete lift of cement, casing eccentricity, and other borehole inhomogeneities.


2006 ◽  
Vol 46 (1) ◽  
pp. 435
Author(s):  
B. Hooper ◽  
B. Koppe ◽  
L. Murray

The Latrobe Valley in Victoria’s Gippsland Basin is the location of one of Australia’s most important energy resources—extremely thick, shallow brown coal seams constituting total useable reserves of more than 50,000 million tonnes. Brown coal has a higher moisture content than black coal and generates more CO2 emissions per unit of useful energy when combusted. Consequently, while the Latrobe Valley’s power stations provide Australia’s lowest- cost bulk electricity, they are also responsible for over 60 million tonnes of CO2 emissions per year—over half of the Victorian total. In an increasingly carbon constrained world the ongoing development of the Latrobe Valley brown coal resource is likely to require a drastic reduction in the CO2 emissions from new coal use projects—and carbon capture and storage (CCS) has the potential to meet such deep cuts. The offshore Gippsland Basin, the site of major producing oil and gas fields, has the essential geological characteristics to provide a high-volume, low-cost site for CCS. The importance of this potential to assist the continuing use of the nation’s lowest-cost energy source prompted the Australian Government to fund the Latrobe Valley CO2 Storage Assessment (LVCSA).The LVCSA proposal was initiated by Monash Energy (formerly APEL, and now a 100% subsidiary of Anglo American)—the proponent of a major brown coal-to-liquids plant in the Latrobe Valley. Monash Energy’s plans for the 60,000 BBL per day plant include CCS to store about 13 million tonnes of CO2 per year. The LVCSA, undertaken for Monash Energy by the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), provides a medium to high-level technical and economic characterisation of the volume and cost potential for secure geosequestration of CO2 produced by the use of Latrobe Valley brown coal (Hooper et al, 2005a). The assessment’s scope includes consideration of the interaction between CO2 injection and oil and gas production, and its findings have been publicly released for use by CCS proponents, oil and gas producers and all other interested parties as an executive summary, (Hooper et al, 2005b), a fact sheet (Hooper et al, 2005c) and a presentation (Hooper et al, 2005d)).The LVCSA identifies the key issues and challenges for implementing CCS in the Latrobe Valley and provides a reference framework for the engagement of stakeholders. In effect the LVCSA constitutes a pre-feasibility study for the implementation of geosequestration in support of the continuing development of Victoria’s brown coal resources.The LVCSA findings indicate that the Gippsland Basin has sufficient capacity to safely and securely store large volumes of CO2 and may provide a viable means of substantially reducing greenhouse gas emissions from coal-fired power plants and other projects using brown coal in the Latrobe Valley. The assessment also indicates that CO2 injection could well be designed to avoid any adverse impact on adjacent oil and gas production, so that CO2 injection can begin near fields that have not yet come to the end of their productive lives. However, CCS proposals involving adjacent injection and production will require more detailed risk management strategies and continuing cooperation between prospective injectors and existing producers.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5054
Author(s):  
Nicholas Thompson ◽  
Jamie Stuart Andrews ◽  
Tore Ingvald Bjørnarå

Due to significant temperature differences between the injected medium and in situ formation, injection of CO2 (as with water or other cold fluids) at depth induces thermal changes that must be accounted for a complete understanding of the mechanical integrity of the injection/storage system. Based on evaluations for the Northern Lights Carbon Capture and Storage (CCS) project, we focus on thermal effects induced on the caprock via conduction from cooling in the storage sands below. We investigate, using both analytical and numerical approaches, how undrained effects within the low permeability caprock can lead to volumetric contraction differences between the rock framework and the pore fluid which induce both stress and pore pressure changes that must be properly quantified. We show that such undrained effects, while inducing a more complicated response in the stress changes in the caprock, do not necessarily lead to unfavourable tensile conditions, and may, in fact, lead to increases in effective stress. These observations build confidence in the integrity of the caprock/seal system. We also show, through conservative assumptions, that pressure communication between the caprock and storage sands may lead to a localised negative effective stress condition, challenging stability of the base caprock, which will be mitigated for in field development planning.


2021 ◽  
Author(s):  
Gianluca Scutiero ◽  
Roberto Rossi ◽  
Guglielmo Luigi Daniele Facchi

Abstract Decarbonization is playing a major role in the near-future strategies of all the major oil and gas companies and one of most promising activity is the Carbon Capture and Storage (CCS). CCS consists in capturing CO2 coming from an industrial process and storing it in subsurface. In this project, three depleted reservoirs have been identified to inject CO2. Despite being located very close to each other, the three reservoirs are not in communication and the same surface facilities would be used for injection. The objective is to develop a suitable workflow for reservoir simulation to evaluate different injection scenarios. For this project, two wet gas reservoir and a light oil reservoir have been considered. A unique fluid description is not practical given the peculiarities of these reservoirs, as well as the construction of a single reservoir model. Currently there are some limitations in commercial solution to handle reservoirs coupling with different fluid description. A workflow has been developed using a controller that manages modules for simulating the whole asset. Injection rate of each well is calculated based on well condition and injection strategy. This process is performed for all the timestep of forecast. This solution guarantees to simulate the CO2 injection in three reservoirs in parallel in a reasonable simulation time (less than 2 hours), demonstrating the capability of overcoming the limitation of a commercial reservoir simulator related to the coupling of fields with different fluid properties. Different scenarios have been simulated considering alternative amount of CO2 to be injected. The gas injection scenario is fully accommodated inside the three reservoirs for all simulated scenarios. Moreover, the injection strategy is based on homogeneous re-pressurization of the three reservoirs and minimization of a possible well unbalancing. To achieve this objective, optimal weights to each field can be assigned to allocate the injection rates. The output of this simulation acts as primary input for dedicated studies (Cap Rock integrity, Thermally Induced Fracturing, Flow Assurance…) with the main advantage of being fully integrated at regional scale. The workflow applied in this project go beyond the main limitations of a standard reservoir coupling model. In particular, 3D reservoir models with different fluid description based on different equation of states, cannot be coupled using the standard workflows of the reservoir simulators, and anyway the available solutions are not fast and easy to implement. This approach provides a robust and flexible evaluation of the CO2 injection scenario in multiple reservoirs.


Author(s):  
Nediljka Gaurina-Medjimurec ◽  
Borivoje Pasic

Geologic storage is the component of Carbon Capture and Storage (CCS) in which the carbon dioxide (CO2) is disposed in the appropriate underground formation. To successfully inject CO2 into the subsurface to mitigate greenhouse gases in the atmosphere, the CO2 must to be trapped in the subsurface and must not be allowed to leak to the surface or to potable water sources above the injection zone. For the purposes of risk assessment, a priority is to evaluate what would happen if CO2 migrated unexpectedly through the confining unit(s), potentially resulting in undesirable impacts on a variety of potential receptors. One of the main risks identified in geological CO2 storage is the potential for CO2 leakage through or along wells. To avoid leakage from the injection wells, the integrity of the wells must be maintained during the injection period and for as long as free CO2 exists in the injection zone.


Sign in / Sign up

Export Citation Format

Share Document