Decadal change in summer precipitation over the east of Northwest China and its associations with atmospheric circulations and sea surface temperatures

Author(s):  
Shasha Shang ◽  
Gaofeng Zhu ◽  
Ruolin Li ◽  
Jie Xu ◽  
Juan Gu ◽  
...  

<p>As global warming has progressed, precipitation patterns over arid Northwest China have undergone significant change. In this study, changes in summer (JJA) precipitation over the eastern part of Northwest China (ENWC) from 1980 to 2014 were investigated using the China gridded monthly precipitation dataset (CN05.1). The results showed that summer precipitation over the ENWC experienced a decadal wet-to-dry shift in 1998. Westerlies played an important role in the upper atmospheric levels in terms of water vapor transport; the decadal variations in summer precipitation were principally controlled by the water vapor input from the ENWC's western boundary. In addition, the decadal variations in summer precipitation in the ENWC appear to be associated with a meridional teleconnection around 110°E and a zonal pattern over 45–60°N in the lower troposphere. These two teleconnections led to cyclonic anomalies in the ENWC and enhanced water vapor transport into the ENWC, resulting in above-normal precipitation during the 1989–1998 decadal period. Further, the warmer (colder) sea surface temperatures (SSTs) observed in the tropical Eastern Pacific correspond to the southward (northward) displacement of the Asian jet stream and a negative (positive) phase of the Silk Road pattern, resulting in a wet (dry) ENWC. Moreover, the SST anomalies in the North Atlantic and Northwest Pacific may affect summer precipitation over the ENWC via a zonal teleconnection in the middle troposphere. Details about the results will be presented in the conference.</p>

2019 ◽  
Vol 32 (21) ◽  
pp. 7575-7594 ◽  
Author(s):  
Bo Sun ◽  
Huijun Wang ◽  
Botao Zhou

Abstract This study examined the interdecadal variations in the relationship between the East Asian water vapor transport (WVT) and the central and eastern tropical Pacific (CETP) sea surface temperatures (SSTs) in January during 1951–2018, focusing on the meridional WVT over East Asia, which is critical for the East Asian winter precipitation. The results indicate that before the 1980s, an increased southerly WVT over East Asia was generally associated with warm SST anomalies in the CETP during January, whereas, after the mid-1980s, an increased southerly WVT over East Asia was mostly associated with cold SST anomalies in the central tropical Pacific during January. The underlying mechanisms are discussed based on a comparison on the climate anomalies associated with the East Asian meridional WVT between the periods of 1951–79 and 1986–2018. During 1951–79, the meridional WVT over East Asia was mainly modulated by the Pacific–East Asian (PEA) teleconnection, which would induce an anomalous southerly WVT over East Asia corresponding to warm SST anomalies in the CETP. Whereas, during 1986–2018, the connection between the PEA teleconnection and the East Asian meridional WVT was weakened. The connection among the CETP SSTs, the anomalous zonal circulation over the North Pacific, and the East Asian meridional WVT was enhanced. Additionally, the connection among the CETP SSTs, the circumglobal teleconnection in the Northern Hemisphere, and the East Asian meridional WVT was enhanced. The above two enhanced connections opposed the effect of the PEA teleconnection and would induce an anomalous southerly WVT over East Asia corresponding to cold SST anomalies in the central tropical Pacific.


2007 ◽  
Vol 64 (3) ◽  
pp. 905-921 ◽  
Author(s):  
John Austin ◽  
John Wilson ◽  
Feng Li ◽  
Holger Vömel

Abstract Stratospheric water vapor concentrations and age of air are investigated in an ensemble of coupled chemistry-climate model simulations covering the period from 1960 to 2005. Observed greenhouse gas concentrations, halogen concentrations, aerosol amounts, and sea surface temperatures are all specified in the model as time-varying fields. The results are compared with two experiments (time-slice runs) with constant forcings for the years 1960 and 2000, in which the sea surface temperatures are set to the same climatological values, aerosol concentrations are fixed at background levels, while greenhouse gas and halogen concentrations are set to the values for the relevant years. The time-slice runs indicate an increase in stratospheric water vapor from 1960 to 2000 due primarily to methane oxidation. The age of air is found to be significantly less in the year 2000 run than the 1960 run. The transient runs from 1960 to 2005 indicate broadly similar results: an increase in water vapor and a decrease in age of air. However, the results do not change gradually. The age of air decreases significantly only after about 1975, corresponding to the period of ozone reduction. The age of air is related to tropical upwelling, which determines the transport of methane into the stratosphere. Oxidation of increased methane from enhanced tropical upwelling results in higher water vapor amounts. In the model simulations, the rate of increase of stratospheric water vapor during the period of enhanced upwelling is up to twice the long-term mean. The concentration of stratospheric water vapor also increases following volcanic eruptions during the simulations.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Claudia Volosciuk ◽  
Douglas Maraun ◽  
Vladimir A. Semenov ◽  
Natalia Tilinina ◽  
Sergey K. Gulev ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2533
Author(s):  
Dongmei Qi ◽  
Yueqing Li ◽  
Changyan Zhou

Based on the daily precipitation data from the meteorological stations in Sichuan and the monthly average ERA-Interim reanalysis data from 1979 to 2016, the variation characteristics of summer water vapor budget in the Sichuan Basin and its relationship with precipitation are discussed in this study. The results show that, in summer, the water vapor in the Sichuan Basin and its four sub-basins flows in from the southern and western boundaries and flows out through the eastern and northern boundaries, and the basin is obviously a water vapor sink. From 1979 to 2016, the water vapor inflow from the southern and western boundaries significantly decreased, as well as the water vapor outflow through the eastern boundary. The summer precipitation in the Sichuan Basin is significantly positively correlated with the water vapor inflow at the southern boundary and net water vapor budget of the basin in the same period, and it is negatively correlated with the water vapor outflow at the northern boundary. The southern and northern boundaries are the two most important boundaries for the summer precipitation in the Sichuan Basin. Additionally, this study reveals that, under the multi-scale topography on the east side of the Tibet Plateau, the spatio-temporal distribution of precipitation in the Sichuan Basin results from the interactions between the unique topography of the Sichuan Basin and the different modes of water-vapor transport from low latitudes. The atmospheric circulation over the key area of air–sea interaction in the tropical region and its accompanying systems, as well as the anomalies of regional circulations and water vapor transport over the eastern China and Sichuan Basin, are the main reasons for the variation in summer precipitation in the Sichuan Basin.


Sign in / Sign up

Export Citation Format

Share Document