Influence of external forcings on the hydroclimate conditions in the Europe-Mediterranean Region over the Common Era : a model/data approach

Author(s):  
Myriam Khodri ◽  
Yang Feng ◽  
Laurent Li ◽  
Marie-Alexandrine Sicre ◽  
Nicolas Lebas

<div> <p>The climate system has been largely influenced by emerging anthropogenic forcing effects during the last decades of the historical period. Hence, the historical simulations may not be the most appropriate ones to constrain the internal climate variability at such long time scales. The last 2000 years provide a promising time frame constrained by climate reconstructions to explore the interactions between external forcings and the internal dynamics of climate. The Common Era is indeed relatively long and forcing are reasonably well reconstructed and physical processes modelled. In this contribution, we use IPSL-CM6A-LR model simulations covering the last 1500 years (500AD to Present Day) and available paleo-proxy reconstructions to study the influence of the internal variability and external forcing on climate variability in the North Atlantic at decadal-to-multi-decadal time scales and the impacts on the hydro-climate conditions evolution over Europe-Mediterranean sector.</p> </div>

2021 ◽  
Vol 12 (4) ◽  
pp. 1239-1251
Author(s):  
Jan Wohland ◽  
Doris Folini ◽  
Bryn Pickering

Abstract. Near-surface winds affect many processes on planet Earth, ranging from fundamental biological mechanisms such as pollination to man-made infrastructure that is designed to resist or harness wind. The observed systematic wind speed decline up to around 2010 (stilling) and its subsequent recovery have therefore attracted much attention. While this sequence of downward and upwards trends and good connections to well-established modes of climate variability suggest that stilling could be a manifestation of multidecadal climate variability, a systematic investigation is currently lacking. Here, we use the Max Planck Institute Grand Ensemble (MPI-GE) to decompose internal variability from forced changes in wind speeds. We report that wind speed changes resembling observed stilling and its recovery are well in line with internal climate variability, both under current and future climate conditions. Moreover, internal climate variability outweighs forced changes in wind speeds on 20-year timescales by 1 order of magnitude, despite the fact that smaller, forced changes become relevant in the long run as they represent alterations of mean states. In this regard, we reveal that land use change plays a pivotal role in explaining MPI-GE ensemble-mean wind changes in the representative concentration pathways 2.6, 4.5, and 8.5. Our results demonstrate that multidecadal wind speed variability is of greater relevance than forced changes over the 21st century, in particular for wind-related infrastructure like wind energy.


2020 ◽  
Author(s):  
Raul R. Wood ◽  
Flavio Lehner ◽  
Angeline Pendergrass ◽  
Sarah Schlunegger ◽  
Keith Rodgers

<p>Identifying anthropogenic influences on climate amidst the “noise” of internal climate variability is a central challenge for the climate research community. In recent years, several modeling groups have produced single-model initial-condition large ensembles (SMILE) to analyze the interplay of the forced climate change and internal climate variability under current and future climate conditions. These simulations help to improve our understanding of climate variability, including extreme events, and can be employed as test-beds for statistical approaches to separate forced and internal components of climate variability.</p><p>So far, most studies have focused on either an individual or a  limited number of SMILEs. In this work we compare seven large ensembles to disentangle the influence of internal variability and model response uncertainty for multiple precipitation indices (e.g. wettest day of the year, precipitation with a return period of 20 years). What can we learn from intercomparison of SMILEs, how similar are they in terms of spatial patterns and forced response, and what if they aren’t? How does the forced response of an ensemble of SMILEs compare to the CMIP5 multi-model ensemble? By assessing multiple SMILEs we can identify robust signals for regional and global precipitation properties and revealing anthropogenic responses that are inherent to our current representations of the Earth system.</p>


2021 ◽  
Author(s):  
Jan Wohland ◽  
Doris Folini ◽  
Bryn Pickering

Abstract. Near-surface winds affect many processes on planet Earth, ranging from fundamental biological mechanisms such as pollination to man-made infrastructure that is designed to resist or harness wind. The observed systematic wind speed decline up to around 2010 (stilling) and its subsequent recovery have therefore attracted much attention. While this sequence of downward and upwards trends and good connections to well established modes of climate variability suggest that stilling could be a manifestation of multidecadal climate variability, a systematic investigation is currently lacking. Here, we use the Max Planck Institute Grand Ensemble (MPI-GE) to decompose internal variability from forced changes in wind speeds. We report that wind speed changes resembling observed stilling and its recovery are well in line with internal climate variability, both under current and future climate conditions. Moreover, internal climate variability outweighs forced changes in wind speeds on 20 year timescales by one order of magnitude. Albeit smaller, forced changes become relevant in the long run as they represent alterations of mean states. In this regard, we reveal that land use change plays a pivotal role in explaining MPI-GE ensemble mean wind changes in the representative concentration pathways 2.6, 4.5, and 8.5. Our results demonstrate that multidecadal wind speed variability is of greater relevance than forced changes over the 21st century, in particular for wind related infrastructure like wind energy.


2021 ◽  
Author(s):  
Leonard F. Borchert ◽  
Alexander J. Winkler

<p>Vegetation in the northern high latitudes shows a characteristic pattern of persistent changes as documented by multi-decadal satellite observations. The prevailing explanation that these mainly increasing trends (greening) are a consequence of external CO<sub>2</sub> forcing, i.e., due to the ubiquitous effect of CO2-induced fertilization and/or warming of temperature-limited ecosystems, however does not explain why some areas also show decreasing trends of vegetation cover (browning). We propose here to consider the dominant mode of multi-decadal internal climate variability in the north Atlantic region, the Atlantic Multidecadal Variability (AMV), as the missing link in the explanation of greening and browning trend patterns in the northern high latitudes. Such a link would also imply potential for decadal predictions of ecosystem changes in the northern high latitudes.</p><p>An analysis of observational and reanalysis data sets for the period 1979-2019 shows that locations characterized by greening trends largely coincide with warming summer temperature and increasing precipitation. Wherever either cooling or decreasing precipitation occurs, browning trends are observed over this period. These precipitation and temperature patterns are significantly correlated with a North Atlantic sea surface temperature index that represents the AMV signal, indicating its role in modulating greening/browning trend patterns in the northern high latitudes.</p><p>Using two large ensembles of coupled Earth system model simulations (100 members of MPI-ESM-LR Grand Ensemble and 32 members of the IPSL-CM6A-LR Large Ensemble), we separate the greening/browning pattern caused by external CO<sub>2</sub> forcing from that caused by internal climate variability associated with the AMV. These sets of model simulations enable a clean separation of the externally forced signal from internal variability. While the greening and browning patterns in the simulations do not agree with observations in terms of magnitude and location, we find consistent internally generated greening/browning patterns in both models caused by changes in temperature and precipitation linked to the AMV signal. These greening/browning trend patterns are of the same magnitude as those caused by the external forcing alone. Our work therefore shows that internally-generated changes of vegetation in the northern lands, driven by AMV, are potentially as large as those caused by external CO<sub>2</sub> forcing. We thus argue that the observed pattern of greening/browning in the northern high latitudes could originate from the combined effect of rising CO<sub>2</sub> as well as the AMV.</p>


2021 ◽  
Author(s):  
Geneviève Elsworth ◽  
Nicole Lovenduski ◽  
Karen McKinnon

<p>Internal climate variability plays an important role in the abundance and distribution of phytoplankton in the global ocean. Previous studies using large ensembles of Earth system models (ESMs) have demonstrated their utility in the study of marine phytoplankton variability. These ESM large ensembles simulate the evolution of multiple alternate realities, each with a different phasing of internal climate variability. However, ESMs may not accurately represent real world variability as recorded via satellite and in situ observations of ocean chlorophyll over the past few decades. Observational records of surface ocean chlorophyll equate to a single ensemble member in the large ensemble framework, and this can cloud the interpretation of long-term trends: are they externally forced, caused by the phasing of internal variability, or both? Here, we use a novel statistical emulation technique to place the observational record of surface ocean chlorophyll into the large ensemble framework. Much like a large initial condition ensemble generated with an ESM, the resulting synthetic ensemble represents multiple possible evolutions of ocean chlorophyll concentration, each with a different phasing of internal climate variability. We further demonstrate the validity of our statistical approach by recreating a ESM ensemble of chlorophyll using only a single ESM ensemble member. We use the synthetic ensemble to explore the interpretation of long-term trends in the presence of internal variability. Our results suggest the potential to explore this approach for other ocean biogeochemical variables.</p>


Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 286
Author(s):  
Paolo Galli

The Italian seismic compilations are among the most complete and back-in time extended worldwide, with earthquakes on record even before the Common Era. However, we have surely lost the memory of dozen strong events of the historical period, mostly in the first millennium CE. Given the lack of certain or conclusive written sources, besides paleoseismological investigations, a complementary way to infer the occurrence of lost earthquakes is to cross-check archaeoseismic evidence from ancient settlements. This usually happens by investigating collapses/restorations/reconstructions of buildings, the general re-organization of the urban texture, or even the abrupt abandonment of the settlement. Exceptionally, epigraphs mentioning more or less explicitly the effects of the earthquake strengthened the field working hypothesis. Here, I deal with both paleoseismological clues from the Monte Marzano Fault System (the structure responsible for the catastrophic, Mw 6.9 1980 earthquake) and archaeoseismological evidence of settlements founded in its surroundings to cast light on two poorly known earthquakes that occurred at the onset and at the end of the first millennium CE, likely in 62 and in 989 CE. Both should share the same seismogenic structure and the size of the 1980 event (Mw 6.9).


2016 ◽  
Vol 29 (10) ◽  
pp. 3661-3673 ◽  
Author(s):  
Ryan J. Kramer ◽  
Brian J. Soden

Abstract In response to rising CO2 concentrations, climate models predict that globally averaged precipitation will increase at a much slower rate than water vapor. However, some observational studies suggest that global-mean precipitation and water vapor have increased at similar rates. While the modeling results emphasize changes at multidecadal time scales where the anthropogenic signal dominates, the shorter observational record is more heavily influenced by internal variability. Whether the physical constraints on the hydrological cycle fundamentally differ between these time scales is investigated. The results of this study show that while global-mean precipitation is constrained by radiative cooling on both time scales, the effects of CO2 dominate on multidecadal time scales, acting to suppress the increase in radiative cooling with warming. This results in a smaller precipitation change compared to interannual time scales where the effects of CO2 forcing are small. It is also shown that intermodel spread in the response of atmospheric radiative cooling (and thus global-mean precipitation) to anthropogenically forced surface warming is dominated by clear-sky radiative processes and not clouds, while clouds dominate under internal variability. The findings indicate that the sensitivity of the global hydrological cycle to surface warming differs fundamentally between internal variability and anthropogenically forced changes and this has important implications for interpreting observations of the hydrological sensitivity.


2020 ◽  
Author(s):  
Fabian von Trentini ◽  
Emma E. Aalbers ◽  
Erich M. Fischer ◽  
Ralf Ludwig

<p>Single model large ensembles are widely used model experiments to estimate internal climate variability (here: inter-annual variability). The underlying assumption is that the internal variability of the chosen model is a good approximation of the observed natural variability. In this study, for the first time over Europe, we test this assumption based on the comparison of three regional climate model large ensembles (16 members of an EC-EARTH-RACMO ensemble, 21 members of a CESM-CCLM ensemble, 50 members of a CanESM-CRCM ensemble) for four European domains (British Isles, France, Mid-Europe, Alps). Simulated inter-annual variability is evaluated against E-OBS and the inter-annual variability and its future change are compared across the ensembles. Analyses comprise seasonal temperature and precipitation, as well as indicators for dry periods and heat waves. Results show a large consistency of all three ensembles with E-OBS data for most indicators and regions, validating the abilities of these ensembles to represent natural variability on the annual scale. EC-EARTH-RACMO shows the highest inter-annual variability for winter temperature and precipitation, whereas CESM-CCLM shows the highest variability for summer temperature and precipitation, as well as for heatwaves and dry periods. Despite these model differences, the sign of the future changes in internal variability is largely the same in all models: for summer temperature, summer precipitation and the number of heat waves, the internal variability increases, while it decreases for winter temperature. While dry periods reveal a tendency to increase in variability, the changes of winter precipitation remain less conclusive. The overall consistency across single model large ensembles and observations strengthens the concept of large ensembles, and underlines their great potential for understanding and quantifying internal climate variability and its role in climate change dynamics.</p>


2015 ◽  
Vol 28 (21) ◽  
pp. 8521-8539 ◽  
Author(s):  
Aimée B. A. Slangen ◽  
John A. Church ◽  
Xuebin Zhang ◽  
Didier P. Monselesan

Abstract Changes in Earth’s climate are influenced by internal climate variability and external forcings, such as changes in solar radiation, volcanic eruptions, anthropogenic greenhouse gases (GHG), and aerosols. Although the response of surface temperature to external forcings has been studied extensively, this has not been done for sea level. Here, a range of climate model experiments for the twentieth century is used to study the response of global and regional sea level change to external climate forcings. Both the global mean thermosteric sea level and the regional dynamic sea level patterns show clear responses to anthropogenic forcings that are significantly different from internal climate variability and larger than the difference between models driven by the same external forcing. The regional sea level patterns are directly related to changes in surface winds in response to the external forcings. The spread between different realizations of the same model experiment is consistent with internal climate variability derived from preindustrial control simulations. The spread between the different models is larger than the internal variability, mainly in regions with large sea level responses. Although the sea level responses to GHG and anthropogenic aerosol forcing oppose each other in the global mean, there are differences on a regional scale, offering opportunities for distinguishing between these two forcings in observed sea level change.


2018 ◽  
Author(s):  
Christoph C. Raible ◽  
Martina Messmer ◽  
Flavio Lehner ◽  
Thomas F. Stocker ◽  
Richard Blender

Abstract. Extratropical cyclones in winter and their characteristics are investigated in depth for the Atlantic European region, as they are responsible for a significant part of the rainfall and extreme wind and/or precipitation-induced hazards. Here, we use a seamless transient simulation with a state-of-the-art fully-coupled Earth System Model from 850 to 2100 CE as basis for the analysis. The RCP8.5 scenario is applied in the 21st century. During the Common Era, cyclone characteristics show pronounced variations on interannual and decadal time scales, but no external forcing imprint is found prior to 1850. Thus, variations of extratropical cyclone characteristics are mainly caused by internal variability of the coupled climate system. When anthropogenic forcing becomes dominant in the 20th century, a decrease of the cyclone occurrences mainly over the Mediterranean and a strong increase of extreme cyclone-related precipitation become detectable. The latter is due to thermodynamics as it follows the Clausius-Clapeyron relation. An important finding, though, is that the relation between temperature and extreme cyclone-related precipitation is not always controlled by the Clausius-Clapeyron relation, which suggests that dynamical processes can play an important role in generating extreme cyclone-related precipitation – for example in the absence of anomalously warm background conditions. Thus, the importance of dynamical processes, even on decadal time scales, might explain the conundrum that proxy records suggest enhanced occurrence of precipitation extremes during rather cold periods in the past.


Sign in / Sign up

Export Citation Format

Share Document