Assessment of CO2-EOR and its geo-storage potential in oil reservoirs of Precaspian basin, Kazakhstan

Author(s):  
Nurlan Seisenbayev ◽  
Yerdaulet Abuov ◽  
Zhanat Tolenbekova ◽  
Woojin Lee

<p>Precaspian basin is the most petroliferous basin in Kazakhstan with more than 100 years of history of the oil and gas industry. The economy of the country has been depending on the revenues coming from the sale of Precaspian oil. Nevertheless, the average oil recovery rate in the country remains low around 30-35% and its government planned to increase the recovery rate to 55-60%. The high oil recovery rate could be achieved by enhanced oil recovery (EOR) methods by injecting diverse inert gases and liquids. The global challenge of excessive CO<sub>2</sub> emissions makes an EOR with CO<sub>2</sub> injection (CO<sub>2</sub>-EOR) a good candidate because the anthropogenic CO<sub>2</sub> emission could be a good source of the injection gas. Depleted oil reservoirs are the first targets for the implementation of carbon storage. The basin contains 178 oil and gas fields distributed in pre-salt and post-salt sections divided by the huge Kungurian salt bed that deformed into domes throughout the basin. A set of suitable reservoir parameters (Original Oil In Place (OOIP), depth, API, pressure, porosity, permeability, initial oil saturation) for CO<sub>2</sub>-EOR have been identified by earlier works of researchers based on previous experience of the petroleum industry and used to screen the oil reservoirs of the Precaspian basin. Thirty-four reservoirs of the basin were identified to be suitable for CO<sub>2</sub>-EOR or CO<sub>2</sub> storage. The effective CO<sub>2</sub> storage capacity of the reservoirs has been estimated using the Carbon Sequestration Leadership Forum (CSLF) method. The previous estimation of the storage capacity of 178 reservoirs was 179.2 Mt of CO<sub>2</sub> however, after the CO<sub>2</sub>-EOR screening, the capacity decreased to 24.4 Mt. The mapping of CO<sub>2</sub> sources and investigation of CO<sub>2</sub> amount released from each CO<sub>2</sub> source in the Precaspian basin will contribute to the CO<sub>2</sub> source-CO<sub>2</sub> sink matching to decide the most feasible CCS options. In addition, the analysis of fault intensity and seismicity in suitable reservoir-seal pairs could have important implications for the safety of CO<sub>2</sub> storage.</p>

Author(s):  
M. Chukunedum Onojake ◽  
T. Angela Waka

The petroleum industry includes the global processes of exploration, extraction, refining, transportation and marketing of natural gas, crude oil and refined petroleum products. The oil industry demands more sophisticated methods for the exploitation of petroleum. As a result, the use of oil field chemicals is becoming increasingly important and has received much attention in recent years due to the vast role they play in the recovery of hydrocarbons which has enormous  commercial benefits. The three main sectors of the petroleum industry are Upstream, Midstream and Downstream. The Upstream deals with exploration and the subsequent production (drilling of exploration wells to recover oil and gas). In the Midstream sector, petroleum produced is transported through pipelines as natural gas, crude oil, and natural gas liquids. Downstream sector is basically involved in the processing of the raw materials obtained from the Upstream sector. The operations comprises of refining of crude oil, processing and purifying of natural gas. Oil field chemicals offers exceptional applications in these sectors with wide range of applications in operations such as improved oil recovery, drilling optimization, corrosion protection, mud loss prevention, drilling fluid stabilization in high pressure and high temperature environment, and many others. Application of a wide range of oilfield chemicals is therefore essential to rectify issues and concerns which may arise from oil and gas operational activities. This review intends to highlight some of the oil field chemicals and  their positive applications in the oil and gas Industries.


2022 ◽  
pp. 173-198
Author(s):  
Kamel Fahmi Bou-Hamdan

The petroleum industry has been an ever-growing industry. New technologies are always being introduced to encompass the challenges that are encountered. Nanomaterials are being included in these technologies to improve the operation of different processes. Their distinctive physical and chemical characteristics encourage their use in different sectors such as the upstream, midstream, and downstream of the oil and gas industry. In this chapter, the nanomaterials that are utilized in the oil and gas industries are highlighted. Their implementation in various applications is also provided. These applications include hydrocarbon exploration, well drilling and completion, production operations, enhanced oil recovery mechanisms, transportation, and refining operations. There is also a discussion about existing problems and possibilities for future uses.


2020 ◽  
Vol 72 (12) ◽  
pp. 60-61
Author(s):  
Judy Feder

This article, written by JPT Technology Editor Judy Feder, contains highlights of paper SPE 199498, “Reuse of Produced Water in the Oil and Gas Industry,” by Madeleine Gray, International Petroleum Industry Environmental Conservation Association, prepared for the 2020 SPE International Conference and Exhibition on Health, Safety, Environment, and Sustainability, originally scheduled to be held in Bogota, Colombia, 28-30 July. The paper has not been peer reviewed. The onshore oil and gas industry investigates new and improved ways to manage the supply and disposal of produced water continually. Within oil and gas operations, produced water increasingly is being recycled and reused for enhanced oil recovery, drilling, and well stimulation. The growing global demand for water resources also is creating interest in reusing produced water outside oil and gas operations. The complete paper focuses on sources of produced water from conventional and unconventional onshore oil and gas operations and addresses the challenges and opportunities associated with reusing the produced water. Introduction Produced water is water that is brought to surface during oil and natural-gas production. It includes formation, flowback, and condensation water. Produced water varies in composition and volume from one formation to another and is often managed as a waste material requiring disposal. In recent years, increased demand for, and regional variability of, available water resources, along with sustainable water-supply planning, have driven interest in reusing produced water with or without treatment to meet requirements within the industry or by external users. Reuse of produced water can provide important economic, social, and environmental benefits, particularly in water-scarce regions. It can be used for hydraulic fracturing, waterflooding, and enhanced oil recovery, decreasing the demand for other sources of water. However, reuse for offsite, non-oilfield applications such as crop irrigation, wildlife and livestock consumption, industrial processes, and power generation, is subject to a variety of constraints and risks. Practical considerations for offsite reuse include supply and demand and regulatory, infrastructural, economic, legal, social, and environmental factors. Sources, Chemical Properties, and Management of Produced Water The information contained in the paper is based on an internal survey conducted by the International Petroleum Industry Environmental Conservation Association (IPIECA) of 14 of its member companies, interviews with selected external stakeholders covering a range of sectors and geographic regions, and a literature review of readily available information. The external stakeholders were identified from the membership survey as well as from IPIECA and consultant experience. Sources and Volumes. Onshore oil and gas operations generate millions of barrels of produced water each day world-wide. The composition and flow of produced water can differ dramatically from one source to another.


2014 ◽  
Vol 936 ◽  
pp. 1553-1555
Author(s):  
Meng Zheng

The technology was used for handling heavy aging oil by demulsifier and three phases horizontal scrow centrifuge. Through laboratory and field test, it showed that the water content of the processed aging oil dropped from 50% to 5% below, purity oil recovery rate reached more than 95%, meeting export quality requirements. The technology improved the effective storage capacity of flow station, is of great significance to the safe and steady operation of flow station.


2021 ◽  
Vol 73 (01) ◽  
pp. 12-13
Author(s):  
Manas Pathak ◽  
Tonya Cosby ◽  
Robert K. Perrons

Artificial intelligence (AI) has captivated the imagination of science-fiction movie audiences for many years and has been used in the upstream oil and gas industry for more than a decade (Mohaghegh 2005, 2011). But few industries evolve more quickly than those from Silicon Valley, and it accordingly follows that the technology has grown and changed considerably since this discussion began. The oil and gas industry, therefore, is at a point where it would be prudent to take stock of what has been achieved with AI in the sector, to provide a sober assessment of what has delivered value and what has not among the myriad implementations made so far, and to figure out how best to leverage this technology in the future in light of these learnings. When one looks at the long arc of AI in the oil and gas industry, a few important truths emerge. First among these is the fact that not all AI is the same. There is a spectrum of technological sophistication. Hollywood and the media have always been fascinated by the idea of artificial superintelligence and general intelligence systems capable of mimicking the actions and behaviors of real people. Those kinds of systems would have the ability to learn, perceive, understand, and function in human-like ways (Joshi 2019). As alluring as these types of AI are, however, they bear little resemblance to what actually has been delivered to the upstream industry. Instead, we mostly have seen much less ambitious “narrow AI” applications that very capably handle a specific task, such as quickly digesting thousands of pages of historical reports (Kimbleton and Matson 2018), detecting potential failures in progressive cavity pumps (Jacobs 2018), predicting oil and gas exports (Windarto et al. 2017), offering improvements for reservoir models (Mohaghegh 2011), or estimating oil-recovery factors (Mahmoud et al. 2019). But let’s face it: As impressive and commendable as these applications have been, they fall far short of the ambitious vision of highly autonomous systems that are capable of thinking about things outside of the narrow range of tasks explicitly handed to them. What is more, many of these narrow AI applications have tended to be modified versions of fairly generic solutions that were originally designed for other industries and that were then usefully extended to the oil and gas industry with a modest amount of tailoring. In other words, relatively little AI has been occurring in a way that had the oil and gas sector in mind from the outset. The second important truth is that human judgment still matters. What some technology vendors have referred to as “augmented intelligence” (Kimbleton and Matson 2018), whereby AI supplements human judgment rather than sup-plants it, is not merely an alternative way of approaching AI; rather, it is coming into focus that this is probably the most sensible way forward for this technology.


2021 ◽  
Author(s):  
Jesus Manuel Felix Servin ◽  
Hala A. Al-Sadeg ◽  
Amr Abdel-Fattah

Abstract Tracers are practical tools to gather information about the subsurface fluid flow in hydrocarbon reservoirs. Typical interwell tracer tests involve injecting and producing tracers from multiple wells to evaluate important parameters such as connectivity, flow paths, fluid-fluid and fluid-rock interactions, and reservoir heterogeneity, among others. The upcoming of nanotechnology enables the development of novel nanoparticle-based tracers to overcome many of the challenges faced by conventional tracers. Among the advantages of nanoparticle-based tracers is the capability to functionalize their surface to yield stability and transportability through the subsurface. In addition, nanoparticles can be engineered to respond to a wide variety of stimuli, including light. The photoacoustic effect is the formation of sound waves following light absorption in a material sample. The medical community has successfully employed photoacoustic nanotracers as contrast agents for photoacoustic tomography imaging. We propose that properly engineered photoacoustic nanoparticles can be used as tracers in oil reservoirs. Our analysis begins by investigating the parameters controlling the conversion of light to acoustic waves, and strategies to optimize such parameters. Next, we analyze different kind of nanoparticles that we deem potential candidates for our subsurface operations. Then, we briefly discuss the excitation sources and make a comparison between continuous wave and pulsed sources. We finish by discussing the research gaps and challenges that must be addressed to incorporate these agents into our operations. At the time of this writing, no other study investigating the feasibility of using photoacoustic nanoparticles for tracer applications was found. Our work paves the way for a new class of passive tracers for oil reservoirs. Photoacoustic nanotracers are easy to detect and quantify and are therefore suitable for continuous in-line monitoring, contributing to the ongoing real-time data efforts in the oil and gas industry.


1986 ◽  
Vol 39 (11) ◽  
pp. 1687-1696 ◽  
Author(s):  
Jean-Claude Roegiers

The petroleum industry offers a broad spectrum of problems that falls within the domain of expertise of mechanical engineers. These problems range from the design of well production equipment to the evaluation of formation responses to production and stimulation. This paper briefly describes various aspects and related difficulties with which the oil industry has to deal, from the time the well is spudded until the field is abandoned. It attempts to delineate the problems, to outline the approaches presently used, and to discuss areas where additional research is needed. Areas of current research activity also are described; whenever appropriate, typical or pertinent case histories are used to illustrate a point.


2016 ◽  
Vol 4 (2) ◽  
pp. 28 ◽  
Author(s):  
Sunmonu Ayobami ◽  
Adabanija Adedapo ◽  
Adagunodo Aanuoluwa ◽  
Adeniji Ayokunnu

Hydrocarbon resources have become the most essential commodity contributing to any nation’s growth and development in the recent years. For the past decades now, the quest for hydrocarbon resources has been increasing in an arithmetic rate that its supply can no longer meets the demand for its consumption today. In petroleum industry, seismic and well log analyses play a vital role in oil and gas exploration and formation evaluation. This study is aimed to effectively characterize the reservoirs and analyze the by-passed pay in Philus Field, Niger-Delta, Nigeria in order to look into the economic viability and profitability of the volume of oil in the identified reservoir(s). The faults in the study area trend in NW-SE direction and dip towards the south. Seven reservoirs were mapped on Philus field. A discovery trap and a by-passed (new prospect) trap were mapped out on the field. The petrophysical analysis showed that porosity of Philus field was 0.24. The volumetric analysis showed that the Stock Tank Original Oil in Place of discovery trap (Philus field) ranged from 1.6 to 43.1 Mbbl while that of new prospect trap ranged from 18.1 to 211.3 Mbbl. It is recommended that the oil reserve of Philus field needs to be recalculated.


Author(s):  
L.S. Leontieva ◽  
◽  
E.B. Makarova ◽  

The oil and gas sector of the economy in many states remains the main source of foreign exchange and tax revenues to the budget. Moreover, its share, for example, in Russia, accounts for about 12 % of all industrial production. However, this sector, as the practice of world oil prices shows, is experiencing not only a rise, but also a decline. Consequently, the problem of forming a balanced portfolio of oil and gas assets is an object of close attention on the part of national oil and gas companies. The issues of choosing the optimal combination of oil and gas assets in the portfolio are no less urgent, especially among the tasks that all oil and gas companies face, both in Russia and abroad. An investment portfolio or a portfolio of oil and gas assets, which includes new projects for the commissioning of fields, as well as measures to enhance oil recovery, and exploration are objects of real investment. The high volatility of the oil and gas industry is influenced by various factors, including: macroeconomic, innovation risks and a number of others. These circumstances stimulate the sector to increase the resilience of its project portfolios in order to respond flexibly to changes. In an increasingly challenging and uncertain environment, oil and gas companies around the world face constant pressures as difficult strategic decisions and building long-term plans lead to a sustainable portfolio. In order to achieve their goals and maximize profitability, companies should apply certain algorithms in their practice. The article substantiates the role and importance of project portfolio management in achieving the goals of the state and companies in the oil and gas sector. The main goal of the article is to build an algorithm that is aimed both at determining the stability of the portfolio and the ability to flexibly respond to changes in the environment. The scientific novelty of the research lies in the determination of an algorithm for assessing the sustainability of a portfolio of projects of oil and gas companies. Application of this algorithm will allow oil and gas companies to take into account the influence of external factors. The research methodology is based on such methods as analysis of internal regulations and reporting of companies for project portfolio management, risk analysis, project ranking; grouping and classification method.


Sign in / Sign up

Export Citation Format

Share Document