Oil, Water, Slag Three Phases Separation Technology of Heavy Aging Oil

2014 ◽  
Vol 936 ◽  
pp. 1553-1555
Author(s):  
Meng Zheng

The technology was used for handling heavy aging oil by demulsifier and three phases horizontal scrow centrifuge. Through laboratory and field test, it showed that the water content of the processed aging oil dropped from 50% to 5% below, purity oil recovery rate reached more than 95%, meeting export quality requirements. The technology improved the effective storage capacity of flow station, is of great significance to the safe and steady operation of flow station.

1970 ◽  
Vol 10 (04) ◽  
pp. 405-417 ◽  
Author(s):  
N.D. Shutler

Abstract This paper describes a numerical mathematical model that is a significant extension of a previously published one-dimensional model of the steamflood published one-dimensional model of the steamflood process. process. The model describes the simultaneous flow of the three phases - oil, water and gas - in two dimensions. Interphase mass transfer between water and gas phases is allowed, but the oil is assumed nonvolatile and the hydrocarbon gas insoluble in the liquid phases. The model allows two-dimensional heat convection within the reservoir and two-dimensional heat conduction in a vertical cross-section spanning the oil sand and adjacent strata. Example calculations are presented which, on comparison with experimental results, tend to validate the model. Steam overriding due to gravity effects is shown to significantly reduce oil recovery efficiency in a thick system while jailing to do so in a thinner system. A study of the effect of capillary pressure indicates that failure to scale capillary forces in laboratory models of thick sands may lead to optimistic recovery predictions, while properly scaled capillary forces may be sufficiently low as to play no important role in oil recovery. Calculations made with and without vertical permeability show that failure to account for vertical fluid flow can lead to predictions of pessimistic oil recovery efficiency. pessimistic oil recovery efficiency Introduction Mathematical tools of varying complexity have been used in studying the steamflood process. A "simplified" class of mathematical models has served primarily as aids in engineering design. A more comprehensive class of models has improved understanding of the nature of the process. The model described in this report is of the latter class, but it is more comprehensive than any previously published model. published model. All previously available calculations of the steamflood process are confined to one space dimension in their treatments of fluid flow. Thus all previous models necessary ignore all effects of gravity reservoir heterogeneity, and nonuniform initial fluid-phase distributions on fluid flow in a second dimension. This model, an extension of a previously published model accounts for heat and previously published model accounts for heat and fluid transfer in two space dimensions and, hence, can evaluate these effects on simultaneous horizontal and vertical flow. While the model can describe the areal performance of a steamflood (in which case the heat transfer is described in three dimensions), this aspect will not be considered in this paper. Rather, this paper will describe the model in its application to a vertical cross-section through the reservoir and will consider some preliminary investigations to demonstrate the importance of being able to simultaneously account for horizontal and vertical fluid flow. Mathematical details are given in appendices. MATHEMATICAL DESCRIPTION OF STEAMFLOODING Darcy's law provides expressions for the velocities of the three phases (oil, water and gas), which, when combined with oil, water and gas mass balances give the partial differential equations governing Now of the three phases within a reservoir sand: OIL PHASE ..(1) WATER PHASE ..(2) SPEJ P. 405


Author(s):  
A H Hammoud ◽  
M F Khalil

Oil spill recovery by means of a rotating drum skimmer was investigated experimentally for a wide range of design and operating conditions. The effect of drum diameter, drum length, rotating speed, oil film thickness, oil properties, and drum centre height above the oil/water interface surface were analyzed with respect to oil recovery rate of the drum skimmer. Crude, diesel, SAE 10W and SAE 140W oils were used during this investigation. It was found that oil recovery rate increases with increasing drum diameter, drum length, drum centre height above the oil/water interface, and oil slick thickness oil viscosity, and increases as oil density and surface tension decreases. The results revealed that the drum skimmer is an effective device for recovering spills of low viscosity oil, such as light crude oil, which is the type of oil involved in most serious spills and pollutions of the sea. Furthermore, an empirical equation is proposed for predicting the oil recovery rate of the device. The equation can be applied to different oils, and gives good agreement with observed data.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Xuyang Zhang ◽  
Jianming Zhang ◽  
Cong Xiao

As a type of unconventional oil and gas resources, tight sandstone reservoir has low permeability and porosity properties and thus is commonly necessary to develop through hydraulic fracturing treatment. Due to the coexistence of natural fractures and induced hydraulic fractures, the heterogeneity of reservoir permeability becomes severe and therefore results in complicated fluid seepage mechanism. It is of significance to investigate the oil-water two-phase seepage mechanics before and after the hydraulic fracturing stimulation with the aim of supporting the actual production and development of oilfield. This paper experimentally investigated the influences of fracture system on seepage characteristics of two-phase displacement in sample cores of fractured tight sandstones. In details, the changes of injection rate, cumulative production rate, recovery ratio, and water content were analyzed before and after the hydraulic fracturing treatments. To further analyze the displacement characteristics of the sample core, the displacement indices of four rock samples in different displacement stages were investigated. The sensitivity of sample core displacement indices to many key factors, including injection time, oil production rate, oil recovery factor and injection multiple factor, and moisture (i.e., water content was 95%, 98%, and 99.5%, respectively), before and after the hydraulic fracturing treatments were obtained synthetically. Besides, the relationship between recovery difference and contribution of fracture to permeability was explored at different water contents. The experimental results reveal that the fracture system shortens the water-free production period and hence reduces the recovery rate. The greater the contribution of fractures to permeability, the lower the recovery of water during this period.


2008 ◽  
Vol 2008 (1) ◽  
pp. 469-473
Author(s):  
Muneo Yoshie ◽  
Isamu Fujita ◽  
Kenji Takezaki

ABSTRACT This paper reports about an oil skimming system for crane barges. It was tested with heavy fuel oil and emulsion in a large test tank and its operational test was carried out at SAKAI PORT in Japan. We can estimate performance of the skimmer from experiment data in large test tank, recovering C heavy fuel oil and its emulsion in waves. Estimated oil recovery rate is 5.9tlh and recovery efficiency is 70% when the oil slick thickness is about 2 cm. The recovery rate is equal to, and the recovery efficiency is 2 times higher than the performance of the grab-bucket (capacity 4m3). As a result of the field test, we can propose the oil skimmer as the most immediate oil recovery equipment with a crane barge'S operation.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8200
Author(s):  
Tao Ning ◽  
Meng Xi ◽  
Bingtao Hu ◽  
Le Wang ◽  
Chuanqing Huang ◽  
...  

Water flooding technology is an important measure to enhance oil recovery in oilfields. Understanding the pore-scale flow mechanism in the water flooding process is of great significance for the optimization of water flooding development schemes. Viscous action and capillarity are crucial factors in the determination of the oil recovery rate of water flooding. In this paper, a direct numerical simulation (DNS) method based on a Navier–Stokes equation and a volume of fluid (VOF) method is employed to investigate the dynamic behavior of the oil–water flow in the pore structure of a low-permeability sandstone reservoir in depth, and the influencing mechanism of viscous action and capillarity on the oil–water flow is explored. The results show that the inhomogeneity variation of viscous action resulted from the viscosity difference of oil and water, and the complex pore-scale oil–water two-phase flow dynamic behaviors exhibited by capillarity play a decisive role in determining the spatial sweep region and the final oil recovery rate. The larger the viscosity ratio is, the stronger the dynamic inhomogeneity will be as the displacement process proceeds, and the greater the difference in distribution of the volumetric flow rate in different channels, which will lead to the formation of a growing viscous fingering phenomenon, thus lowering the oil recovery rate. Under the same viscosity ratio, the absolute viscosity of the oil and water will also have an essential impact on the oil recovery rate by adjusting the relative importance between viscous action and capillarity. Capillarity is the direct cause of the rapid change of the flow velocity, the flow path diversion, and the formation of residual oil in the pore space. Furthermore, influenced by the wettability of the channel and the pore structure’s characteristics, the pore-scale behaviors of capillary force—including the capillary barrier induced by the abrupt change of pore channel positions, the inhibiting effect of capillary imbibition on the flow of parallel channels, and the blockage effect induced by the newly formed oil–water interface—play a vital role in determining the pore-scale oil–water flow dynamics, and influence the final oil recovery rate of the water flooding.


2020 ◽  
Author(s):  
Nurlan Seisenbayev ◽  
Yerdaulet Abuov ◽  
Zhanat Tolenbekova ◽  
Woojin Lee

<p>Precaspian basin is the most petroliferous basin in Kazakhstan with more than 100 years of history of the oil and gas industry. The economy of the country has been depending on the revenues coming from the sale of Precaspian oil. Nevertheless, the average oil recovery rate in the country remains low around 30-35% and its government planned to increase the recovery rate to 55-60%. The high oil recovery rate could be achieved by enhanced oil recovery (EOR) methods by injecting diverse inert gases and liquids. The global challenge of excessive CO<sub>2</sub> emissions makes an EOR with CO<sub>2</sub> injection (CO<sub>2</sub>-EOR) a good candidate because the anthropogenic CO<sub>2</sub> emission could be a good source of the injection gas. Depleted oil reservoirs are the first targets for the implementation of carbon storage. The basin contains 178 oil and gas fields distributed in pre-salt and post-salt sections divided by the huge Kungurian salt bed that deformed into domes throughout the basin. A set of suitable reservoir parameters (Original Oil In Place (OOIP), depth, API, pressure, porosity, permeability, initial oil saturation) for CO<sub>2</sub>-EOR have been identified by earlier works of researchers based on previous experience of the petroleum industry and used to screen the oil reservoirs of the Precaspian basin. Thirty-four reservoirs of the basin were identified to be suitable for CO<sub>2</sub>-EOR or CO<sub>2</sub> storage. The effective CO<sub>2</sub> storage capacity of the reservoirs has been estimated using the Carbon Sequestration Leadership Forum (CSLF) method. The previous estimation of the storage capacity of 178 reservoirs was 179.2 Mt of CO<sub>2</sub> however, after the CO<sub>2</sub>-EOR screening, the capacity decreased to 24.4 Mt. The mapping of CO<sub>2</sub> sources and investigation of CO<sub>2</sub> amount released from each CO<sub>2</sub> source in the Precaspian basin will contribute to the CO<sub>2</sub> source-CO<sub>2</sub> sink matching to decide the most feasible CCS options. In addition, the analysis of fault intensity and seismicity in suitable reservoir-seal pairs could have important implications for the safety of CO<sub>2</sub> storage.</p>


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Hou ◽  
Ming Han ◽  
Jinxun Wang

AbstractThis work investigates the effect of the surface charges of oil droplets and carbonate rocks in brine and in surfactant solutions on oil production. The influences of the cations in brine and the surfactant types on the zeta-potentials of both oil droplets and carbonate rock particles are studied. It is found that the addition of anionic and cationic surfactants in brine result in both negative or positive zeta-potentials of rock particles and oil droplets respectively, while the zwitterionic surfactant induces a positive charge on rock particles and a negative charge on oil droplets. Micromodels with a CaCO3 nanocrystal layer coated on the flow channels were used in the oil displacement tests. The results show that when the oil-water interfacial tension (IFT) was at 10−1 mN/m, the injection of an anionic surfactant (SDS-R1) solution achieved 21.0% incremental oil recovery, higher than the 12.6% increment by the injection of a zwitterionic surfactant (SB-A2) solution. When the IFT was lowered to 10−3 mM/m, the injection of anionic/non-ionic surfactant SMAN-l1 solution with higher absolute zeta potential value (ζoil + ζrock) of 34 mV has achieved higher incremental oil recovery (39.4%) than the application of an anionic/cationic surfactant SMAC-l1 solution with a lower absolute zeta-potential value of 22 mV (30.6%). This indicates that the same charge of rocks and oil droplets improves the transportation of charged oil/water emulsion in the porous media. This work reveals that the surface charge in surfactant flooding plays an important role in addition to the oil/water interfacial tension reduction and the rock wettability alteration.


Sign in / Sign up

Export Citation Format

Share Document