Gullies on Mars and seasonal ices visualised using the Colour and Stereo Surface Imaging System (CaSSIS)

Author(s):  
Susan Conway ◽  
Antoine Pommerol ◽  
Jan Raack ◽  
Meven Philippe ◽  
Alfred Mcewen ◽  
...  

<p>Young gullies on Mars were first reported by Malin and Edgett in 2000 and were hailed as evidence of recent liquid water flows on Mars. Since that time, monitoring of gullies has revealed they are active today at times of year when the martian surface is at its coldest and when carbon dioxide ice is condensed on to the surface. In order to further explore the relationship between surface frosts and gully-activity we focus on Sisyphi Cavi near the south pole of Mars, where gully-activity has already been studied and CaSSIS obtained a dense temporal coverage in 2018. We identified the following sequence of events:</p><p>1) In winter frost covers all surfaces and dark spots and flows can be seen across the slopes with gullies and preferentially around the gully channels. This is consistent with previous observations and has been interpreted to be the surface expression of gas-jets generated by the sublimation of CO<sub>2</sub> underneath a continuous slab of CO<sub>2</sub> ice on the surface. The jets occur when the pressure fractures the slab ice and the pressurized gas can escape with entrained particles.</p><p>2) As the surface temperature increases towards 200 K, the top of the slopes are the first to defrost followed by sun facing parts of the alcoves and channels.</p><p>3) As the surface temperature approaches and exceeds 250 K and the surrounding terrain is completely defrosted, the last parts of the gully to remain frost covered are the fans. We interpret this to be a result of the fans having slightly lower thermal inertia than the surrounding materials. This lower thermal inertia could be because the fans have a lower content of water ice (i.e. a thicker lag on top of the ice-table), because of recent depositional events. It is at this time of year when gullies are most active. Hence, we infer that gully activity increases when there is both frosted and defrosted surfaces available to drive vigorous sublimation of the CO<sub>2</sub> ice.</p><p>4) Finally, once defrosting has almost fully completed and surface temperatures have reached their seasonal maximum of ~270 K the only remaining surface frosts are in pole-facing niches at the base of gully-alcoves.</p><p>Our study has underlined that the colour capability of the CaSSIS instrument is particularly suited to studying and monitoring changes in surface ices. Our observations reveal that gully-alcoves defrost before the fans and gullies defrost later than surrounding terrain – suggesting activity is driven by the availability of “hot” sediment to trigger more efficient sublimation. Further work will examine whether surface frost patterns differ between gullies that have been shown to be active and inactive since spacecraft observations began.</p>

2021 ◽  
Vol 13 (11) ◽  
pp. 2206
Author(s):  
Yaowen Luo ◽  
Jianguo Yan ◽  
Fei Li ◽  
Bo Li

Variations in the Martian surface temperature indicate patterns of surface energy exchange. The Martian surface temperature at a location is similar to those in adjacent locations; but, an understanding of temperature clusters in multiple locations will deepen our knowledge of planetary surface processes overall. The spatial coherence of the Martian surface temperature (ST) at different locations, the spatio-temporal variations in temperature clusters, and the relationships between ST and near-surface environmental factors, however, are not well understood. To fill this gap, we studied an area to the south of Utopia Planitia, the landing zone for the Tianwen-1 Mars Exploration mission. The spatial aggregation of three Martian ST indicators (STIs), including sol average temperature (SAT), sol temperature range (STR), and sol-to-sol temperature change (STC), were quantitatively evaluated using clustering analysis at the global and local scale. In addition, we also detected the spatio-temporal variations in relations between the STIs and seven potential driving factors, including thermal inertia, albedo, dust, elevation, slope, and zonal and meridional winds, across the study area during 81 to 111 sols in Martian years 29–32, based on a geographically and temporally weighted regression model (GTWR). We found that the SAT, STR, and STC were not randomly distributed over space but exhibited signs of significant spatial aggregation. Thermal inertia and dust made the greatest contribution to the fluctuation in STIs over time. The local surface temperature was likely affected by the slope, wind, and local circulation, especially in the area with a large slope and low thermal inertia. In addition, the sheltering effects of the mountains at the edge of the basin likely contributed to the spatial difference in SAT and STR. These results are a reminder that the spatio-temporal variation in the local driving factors associated with Martian surface temperature cannot be neglected. Our research contributes to the understanding of the surface environment that might compromise the survival and operations of the Tianwen-1 lander on the Martian surface.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4010
Author(s):  
Monika Gwadera ◽  
Krzysztof Kupiec

In order to find the temperature field in the ground with a heat exchanger, it is necessary to determine temperature responses of the ground caused by heat sources and the influence of the environment. To determine the latter, a new model of heat transfer in the ground under natural conditions was developed. The heat flux of the evaporation of moisture from the ground was described by the relationship taking into account the annual amount of rainfall. The analytical solution for the equations of this model is presented. Under the conditions for which the calculations were performed, the following data were obtained: the average ground surface temperature Tsm = 10.67 °C, the ground surface temperature amplitude As = 13.88 K, and the phase angle Ps = 0.202 rad. This method makes it possible to easily determine the undisturbed ground temperature at any depth and at any time. This solution was used to find the temperature field in the ground with an installed slinky-coil heat exchanger that consisted of 63 coils. The results of calculations according to the presented model were compared with the results of measurements from the literature. The 3D model for the ground with an installed heat exchanger enables the analysis of the influence of miscellaneous parameters of the process of extracting or supplying heat from/to the ground on its temperature field.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2163
Author(s):  
Krzysztof Żaba ◽  
Tomasz Trzepieciński ◽  
Sandra Puchlerska ◽  
Piotr Noga ◽  
Maciej Balcerzak

The paper is devoted to highlighting the potential application of the quantitative imaging technique through results associated with work hardening, strain rate and heat generated during elastic and plastic deformation. The aim of the research presented in this article is to determine the relationship between deformation in the uniaxial tensile test of samples made of 1-mm-thick nickel-based superalloys and their change in temperature during deformation. The relationship between yield stress and the Taylor–Quinney coefficient and their change with the strain rate were determined. The research material was 1-mm-thick sheets of three grades of Inconel alloys: 625 HX and 718. The Aramis (GOM GmbH, a company of the ZEISS Group) measurement system and high-sensitivity infrared thermal imaging camera were used for the tests. The uniaxial tensile tests were carried out at three different strain rates. A clear tendency to increase the sample temperature with an increase in the strain rate was observed. This conclusion applies to all materials and directions of sample cutting investigated with respect to the sheet-rolling direction. An almost linear correlation was found between the percent strain and the value of the maximum surface temperature of the specimens. The method used is helpful in assessing the extent of homogeneity of the strain and the material effort during its deformation based on the measurement of the surface temperature.


2010 ◽  
Vol 25 (2) ◽  
pp. 799-814 ◽  
Author(s):  
Matthew J. Bunkers ◽  
John R. Wetenkamp ◽  
Jeffrey J. Schild ◽  
Anthony Fischer

Abstract The relationship between 700-mb temperatures and convective severe storm reports is examined using data from 1993 to 2006 for the contiguous United States. Severe storm reports are used as a rough “proxy” for the occurrence of deep moist convection, and spatial and temporal distributions of 700-mb temperatures associated with these reports are analyzed. Secondarily, the distributions are assessed by individual severe storm report type, and convective inhibition also is evaluated. The motivation for this study is derived from the occasionally used 10°–12°C at 700 mb rule of thumb for estimating the extent and strength of the capping inversion. Whereas there is a semblance of merit for using this rule at times, its utility is shown to be strongly dependent on 1) geographic location, particularly with respect to surface elevation and the frequency of elevated mixed layers, and 2) the time of year. Calculation of convective inhibition, careful examination of the sounding, and assessment of lifting mechanisms likely are more valuable than 700-mb temperatures when forecasting the potential for deep moist convection and severe storms.


Sign in / Sign up

Export Citation Format

Share Document