scholarly journals Substorm onset latitude and the steadiness of magnetospheric convection

Author(s):  
Steve Milan ◽  
Jenny Carter ◽  
Maria-Theresia Walach ◽  
Harneet Sangha ◽  
Brian Anderson

<p>We study the role of substorms and steady magnetospheric convection (SMC) in magnetic flux transport in the magnetosphere, using observations of field-aligned currents (FACs) by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE).  We identify two classes of substorm, with onsets above and below 65<sup>o</sup> magnetic latitude, which display different nightside FAC morphologies.  We show that the low-latitude onsets develop a poleward-expanding auroral bulge, and identify these as substorms that manifest ionospheric convection-braking in the auroral bulge region.  We show that the high-latitude substorms, which do not experience braking, can evolve into SMC events if the interplanetary magnetic field (IMF) remains southwards for a prolonged period following onset.  Our results provide a new explanation for the differing modes of response of the terrestrial system to solar wind-magnetosphere-ionosphere coupling, as understood in the context of the expanding/contracting polar cap paradigm, by invoking friction between the ionosphere and atmosphere.</p>

2012 ◽  
Vol 30 (6) ◽  
pp. 927-928 ◽  
Author(s):  
M. C. Kelley

Abstract. The solar wind inputs considerable energy into the upper atmosphere, particularly when the interplanetary magnetic field (IMF) is southward. According to Poynting's theorem (Kelley, 2009), this energy becomes stored as magnetic fields and then is dissipated by Joule heat and by energizing the plasmasheet plasma. If the IMF turns suddenly northward, very little energy is transferred into the system while Joule dissipation continues. In this process, the polar cap potential (PCP) decreases. Experimentally, it was shown many years ago that the energy stored in the magnetosphere begins to decay with a time constant of two hours. Here we use Poynting's theorem to calculate this time constant and find a result that is consistent with the data.


2020 ◽  
Author(s):  
Lihui Chai ◽  
James Slavin ◽  
Yong Wei ◽  
Weixing Wan ◽  
Charlie F. Bowers ◽  
...  

<p>The induced magnetotails on Mars and Venus are considered to arise through the interplanetary magnetic field (IMF) draping around the planet and the solar wind deceleration due to the mass loading effect. They have very similar structures as that on Earth, two magnetic lobes of opposite radial magnetic fields and a plasma sheet in between. However, the orientation and geometry of the induced magnetotails are controlled by the IMF, not the planetary intrinsic magnetic field. In this study, we present another characteristic of the induced magnetotails on Mars and Venus with the observations of MAVEN and Venus Express. It is found that the magnetic flux in the induced magnetotails on Mars and Venus are inhomogeneous. There is more magnetic flux in the +E hemisphere than -E hemisphere. The magnetic flux is observed to transport gradually from the +E hemisphere to the -E hemisphere along the magnetotail. The magnetotail magnetic flux transport seems to be faster on Mars than that at Venus. Based on these observations, we suggest that the finite gyro-radius effect of the planetary ions that are picked up by the solar wind is responsible to the magnetic flux inhomogeneity and transport in the induced magnetotails. The role of the magnetic pressure gradient in the magnetotail will be discussed.</p>


2017 ◽  
Vol 44 (23) ◽  
pp. 11,729-11,734 ◽  
Author(s):  
Dong Lin ◽  
Binzheng Zhang ◽  
Wayne A. Scales ◽  
Michael Wiltberger ◽  
C. Robert Clauer ◽  
...  

2021 ◽  
Author(s):  
Anna Tenerani ◽  
Marco Velli ◽  
Lorenzo Matteini

<p>Alfvénic fluctuations represent the dominant contributions to turbulent fluctuations in the solar wind, especially, but not limited to, the fastest streams with velocity of the order of 600-700 km/s. Alfvénic fluctuations can contribute to solar wind heating and acceleration via wave pressure and turbulent heating. Observations show that such fluctuations are characterized by a nearly constant magnetic field amplitude, a condition which remains largely to be understood and that may be an indication of how fluctuations evolve and relax in the expanding solar wind. Interestingly, measurements from Parker Solar Probe have shown the ubiquitous and persistent presence of the so-called switchbacks. These are magnetic field lines which are strongly perturbed to the point that they produce local inversions of the radial magnetic field. The corresponding signature of switchbacks in the velocity field is that of local enhancements in the radial speed (or jets) that display the typical velocity-magnetic field correlation that characterizes Alfvén waves propagating away from the Sun. While there is not yet a general consensus on what is the origin of switchbacks and their connection to coronal activity, a first necessary step to answer these important questions is to understand how they evolve and how long they can persist in the solar wind. Here we investigate the evolution of switchbacks. We address how their evolution is affected by parametric instabilities and the possible role of expansion, by comparing models with the observed radial evolution of the fluctuations’ amplitude. We finally discuss what are the implications of our results for models of switchback generation and related open questions.</p>


2006 ◽  
Vol 24 (11) ◽  
pp. 3131-3137 ◽  
Author(s):  
X.-Z. Zhou ◽  
T. A. Fritz ◽  
Q.-G. Zong ◽  
Z. Y. Pu ◽  
Y.-Q. Hao ◽  
...  

Abstract. The study focuses on a single particle dynamics in the cusp region. The topology of the cusp region in terms of magnetic field iso-B contours has been studied using the Tsyganenko 96 model (T96) as an example, to show the importance of an off-equatorial minimum on particle trapping. We carry out test particle simulations to demonstrate the bounce and drift motion. The "cusp trapping limit" concept is introduced to reflect the particle motion in the high latitude magnetospheric region. The spatial distribution of the "cusp trapping limit" shows that only those particles with near 90° pitch-angles can be trapped and drift around the cusp. Those with smaller pitch angles may be partly trapped in the iso-B contours, however, they will eventually escape along one of the magnetic field lines. There exist both open field lines and closed ones within the same drift orbit, indicating two possible destinations of these particles: those particles being lost along open field lines will be connected to the surface of the magnetopause and the solar wind, while those along closed ones will enter the equatorial radiation belt. Thus, it is believed that the cusp region can provide a window for particle exchange between these two regions. Some of the factors, such as dipole tilt angle, magnetospheric convection, IMF and the Birkeland current system, may influence the cusp's trapping capability and therefore affect the particle exchanging mechanism. Their roles are examined by both the analysis of cusp magnetic topology and test particle simulations.


2005 ◽  
Vol 23 (11) ◽  
pp. 3533-3547 ◽  
Author(s):  
A. J. Ridley

Abstract. It is known that the ionospheric cross polar cap potential (CPCP) saturates when the interplanetary magnetic field (IMF) Bz becomes very large. Few studies have offered physical explanations as to why the polar cap potential saturates. We present 13 events in which the reconnection electric field (REF) goes above 12mV/m at some time. When these events are examined as typically done in previous studies, all of them show some signs of saturation (i.e., over-prediction of the CPCP based on a linear relationship between the IMF and the CPCP). We show that by taking into account the size of the magnetosphere and the fact that the post-shock magnetic field strength is strongly dependent upon the solar wind Mach number, we can better specify the ionospheric CPCP. The CPCP (Φ) can be expressed as Φ=(10-4v2+11.7B(1-e-Ma/3)sin3(θ/2)) {rms/9 (where v is the solar wind velocity, B is the combined Y and Z components of the interplanetary magnetic field, Ma is the solar wind Mach number, θ=acos(Bz/B), and rms is the stand-off distance to the magnetopause, assuming pressure-balance between the solar wind and the magnetosphere). This is a simple modification of the original Boyle et al. (1997) formulation.


Strong interactions occur between the solar wind and the Earth’s magnetic field which result in the convection of ionospheric plasma over the polar cap regions. This generally forms a two-cell pattern with westward and eastward flows in the pre- and post-midnight sectors respectively. The flow pattern is sensitive to the flux of the solar wind and the direction of the interplanetary magnetic field. Observations of the flow pattern are thus of considerable value in the interpretation of the magnetosphere-ionosphere coupling processes and in identifying the influence of the solar wind on the Earth’s environment. The plasma convection can be observed by ground-based coherent and incoherent scatter radars and the flow vectors determined. Measurements for a range of flow conditions are presented. These are interpreted in terms of the interactions of the solar wind with the magnetosphere and the resulting electric fields which drive the plasma flows in the ionosphere.


1999 ◽  
Vol 17 (10) ◽  
pp. 1245-1250 ◽  
Author(s):  
S. Lepidi ◽  
P. Francia ◽  
U. Villante ◽  
A. Meloni ◽  
A. J. Lazarus ◽  
...  

Abstract. An analysis of the low frequency geomagnetic field fluctuations at an Antarctic (Terra Nova Bay) and a low latitude (L'Aquila, Italy) station during the Earth's passage of a coronal ejecta on April 11, 1997 shows that major solar wind pressure variations were followed at both stations by a high fluctuation level. During northward interplanetary magnetic field conditions and when Terra Nova Bay is close to the local geomagnetic noon, coherent fluctuations, at the same frequency (3.6 mHz) and with polarization characteristics indicating an antisunward propagation, were observed simultaneously at the two stations. An analysis of simultaneous measurements from geosynchronous satellites shows evidence for pulsations at approximately the same frequencies also in the magnetospheric field. The observed waves might then be interpreted as oscillation modes, triggered by an external stimulation, extending to a major portion of the Earth's magnetosphere. Key words. Magnetospheric physics (MHD waves and instabilities; solar wind-magnetosphere interactions)


2001 ◽  
Vol 19 (10/12) ◽  
pp. 1589-1612 ◽  
Author(s):  
M. Lockwood ◽  
H. Opgenoorth ◽  
A. P. van Eyken ◽  
A. Fazakerley ◽  
J.-M. Bosqued ◽  
...  

Abstract. During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR) at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches"), with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5) min, the interplanetary magnetic field (IMF) had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event), was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites) show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV) and the topside ionospheric enhancements seen by the ESR (at 400–700 km). We suggest that a potential barrier at the magnetopause, which prevents the lowest energy electrons from entering the magnetosphere, is reduced when and where the boundary-normal magnetic field is enhanced and that the observed polar cap patches are produced by the consequent enhanced precipitation of the lowest energy electrons, making them and the low energy electron precipitation fossil remnants of the magnetopause reconnection rate pulses.Key words. Magnetospheric physics (polar cap phenomena; solar wind – magnetosphere interactions; magnetosphere – ionosphere interactions)


Sign in / Sign up

Export Citation Format

Share Document