A teleconnection pattern of 10-30-day atmospheric oscilations over North Pacific during summer: Chracteristics and maintainance mechanism

Author(s):  
Lei Du ◽  
Riyu Lu

<p>The present study investigates the intraseasonal variations of meridional winds over North Pacific during summer based on reanalysis datasets. It is shown that the band of 10-30 days is the main component of total intraseasonal varaitions. We identified a teleconnection pattern over North Pacific at this band . This teleconnection pattern is characterized by a zonally-oriented wave-like structure with a zonal wavenumber 5, and does not show a phase-locking feature. In addition, the anomalies associated with the teleconnection pattern exhibit a roughly baratropic structure. Further analyses suggest that the teleconnection pattern can gain energy from the basic flow through the baroclinic energy conversion, while the barotropic energy conversion plays a trivial role.</p>

2011 ◽  
Vol 24 (3) ◽  
pp. 927-941 ◽  
Author(s):  
Pang-chi Hsu ◽  
Tim Li ◽  
Chih-Hua Tsou

Abstract The role of scale interactions in the maintenance of eddy kinetic energy (EKE) during the extreme phases of the intraseasonal oscillation (ISO) is examined through the construction of a new eddy energetics diagnostic tool that separates the effects of ISO and a low-frequency background state (LFBS; with periods longer than 90 days). The LFBS always contributes positively toward the EKE in the boreal summer, regardless of the ISO phases. The synoptic eddies extract energy from the ISO during the ISO active phase. This positive barotropic energy conversion occurs when the synoptic eddies interact with low-level cyclonic and convergent–confluent ISO flows. This contrasts with the ISO suppressed phase during which the synoptic eddies lose kinetic energy to the ISO flow. The anticyclonic and divergent–diffluent ISO flows during the suppressed phase are responsible for the negative barotropic energy conversion. A positive (negative) EKE tendency occurs during the ISO suppressed-to-active (active-to-suppressed) transitional phase. The cause of this asymmetric EKE tendency is attributed to the spatial phase relation among the ISO vorticity, eddy structure, and EKE. The southwest–northeast-tilted synoptic disturbances interacting with cyclonic (anticyclonic) vorticity of ISO lead to a positive (negative) EKE tendency in the northwest region of the maximum EKE center. The genesis number and location and intensification rate of tropical cyclones in the western North Pacific are closely related to the barotropic energy conversion. The enhanced barotropic energy conversion favors the generation and development of synoptic seed disturbances, some of which eventually grow into tropical cyclones.


2019 ◽  
Vol 32 (19) ◽  
pp. 6645-6661 ◽  
Author(s):  
Xi Cao ◽  
Renguang Wu ◽  
Mingyu Bi ◽  
Xiaoqing Lan ◽  
Yifeng Dai ◽  
...  

Abstract The present study investigates relative contributions of interannual, intraseasonal, and synoptic variations of environmental factors to tropical cyclone (TC) genesis over the northern tropical Atlantic (NTA) during July–October. Analysis shows that convection, lower-level vorticity, and midlevel specific humidity contribute to TC genesis through intraseasonal and synoptic variations with a larger contribution of the latter. The relative contribution of three components of vertical wind shear depends largely on its magnitude. The contribution of sea surface temperature (SST) to TC genesis is mainly due to the interannual component when total SST is above 27.5°C. The barotropic energy for the development of synoptic-scale disturbances comes mainly from climatological mean flows and intraseasonal wind variations. The proportion of contribution between synoptic and intraseasonal variations of convection, relative vorticity, and specific humidity is larger over the eastern NTA than over the western NTA. The barotropic energy conversion has a larger part related to climatological mean flows and intraseasonal wind variations over the eastern and western NTA, respectively. There are notable differences between the NTA and the western North Pacific (WNP). One is that the relative contribution of synoptic variations of convection, relative vorticity, and specific humidity is larger over the NTA, whereas that of intraseasonal variations is larger over the WNP. The other is that the barotropic energy conversion related to climatological mean flows and intraseasonal wind variations is comparable over the NTA, whereas that related to climatological mean flows is larger over the WNP.


2010 ◽  
Vol 67 (11) ◽  
pp. 3706-3720 ◽  
Author(s):  
Hyo-Seok Park ◽  
John C. H. Chiang ◽  
Seok-Woo Son

Abstract The role of the central Asian mountains on North Pacific storminess is examined using an atmospheric general circulation model by varying the height and the areas of the mountains. A series of model integrations show that the presence of the central Asian mountains suppresses the North Pacific storminess by 20%–30% during boreal winter. Their impact on storminess is found to be small during other seasons. The mountains amplify stationary waves and effectively weaken the high-frequency transient eddy kinetic energy in boreal winter. Two main causes of the reduced storminess are diagnosed. First, the decrease in storminess appears to be associated with a weakening of downstream eddy development. The mountains disorganize the zonal coherency of wave packets and refract them more equatorward. As the zonal traveling distance of wave packets gets substantially shorter, downstream eddy development gets weaker. Second, the central Asian mountains suppress the global baroclinic energy conversion. The decreased baroclinic energy conversion, particularly over the eastern Eurasian continent, decreases the number of eddy disturbances entering into the western North Pacific. The “barotropic governor” does not appear to explain the reduced storminess in our model simulations.


2014 ◽  
Vol 27 (10) ◽  
pp. 3750-3766 ◽  
Author(s):  
Chih-Hua Tsou ◽  
Huang-Hsiung Hsu ◽  
Pang-Chi Hsu

Abstract This study formulates a synoptic-scale eddy (SSE) kinetic energy equation by partitioning the original field into seasonal mean circulation, intraseasonal oscillation (ISO), and SSEs to examine the multiscale interactions over the western North Pacific (WNP) in autumn. In addition, the relative contribution of synoptic-mean and synoptic-ISO interactions to SSE kinetic energy was quantitatively estimated by further separating barotropic energy conversion (CK) into synoptic-mean barotropic energy conversion (CKS−M) and synoptic-ISO barotropic energy conversion (CKS−ISO) components. The development of tropical SSE in the lower troposphere is mainly attributed to CK associated with multiscale interactions. Mean cyclonic circulation in the lower troposphere consistently provides kinetic energy to SSEs (CKS−M > 0) during the ISO westerly and easterly phases. However, CKS−ISO during the ISO westerly and easterly phases differs considerably. During the ISO westerly phase, the enhanced ISO cyclonic flow converts energy to SSEs (CKS−ISO > 0). The magnitude of the downscale energy conversion from mean and ISO to SSEs is related to the strength of the SSEs. During the ISO westerly phase, a stronger SSE extracts more kinetic energy from mean and ISO circulation. This positive feedback between SSE-mean and SSE–ISO interactions causes further strengthening of SSEs during the ISO westerly phase. By contrast, upscale energy conversion from SSEs to ISO anticyclonic flow (CKS−ISO < 0) was observed during the ISO easterly phase. The weaker SSE activity during the ISO easterly phase occurred because the mean circulation provides less energy to SSEs and, at the same time, SSEs lose energy to ISO during the ISO easterly phase. The two-way interaction between the ISO and SSEs has considerable effects on the development of tropical SSEs over the WNP in autumn.


2021 ◽  
pp. 1-55

Abstract Storm-track activity over the North Pacific climatologically exhibits a clear minimum in midwinter, when the westerly jet speed sharply maximizes. This counterintuitive phenomenon, referred to as the “midwinter minimum (MWM)”, has been investigated from various perspectives, but the mechanisms are still to be unrevealed. Toward better understanding of this phenomenon, the present study delineates the detailed seasonal evolution of climatological-mean Eulerian statistics and energetics of migratory eddies along the NP storm-track over 60 years. As a comprehensive investigation of the mechanisms for the MWM, this study has revealed that the net eddy conversion/generation rate normalized by the eddy total energy, which is independent of eddy amplitude, is indeed reduced in midwinter. The reduction from early winter occurs mainly due to the decreased effectiveness of the baroclinic energy conversion through seasonally weakened temperature fluctuations and the resultant poleward eddy heat flux. The reduced net normalized conversion/generation rate in midwinter is also found to arise in part from the seasonally enhanced kinetic energy conversion from eddies into the strongly diffluent Pacific jet around its exit. The seasonality of the net energy influx also contributes especially to the spring recovery of the net normalized conversion/generation rate. The midwinter reduction in the normalized rates of both the net energy conversion/generation and baroclinic energy conversion was more pronounced in the period before the late 1980s, during which the MWM of the storm-track activity was climatologically more prominent.


2010 ◽  
Vol 138 (9) ◽  
pp. 3634-3655 ◽  
Author(s):  
Munehiko Yamaguchi ◽  
Sharanya J. Majumdar

Abstract Ensemble initial perturbations around Typhoon Sinlaku (2008) produced by ECMWF, NCEP, and the Japan Meteorological Agency (JMA) ensembles are compared using The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data, and the dynamical mechanisms of perturbation growth associated with the tropical cyclone (TC) motion are investigated for the ECMWF and NCEP ensembles. In the comparison, it is found that the vertical and horizontal distributions of initial perturbations as well as the amplitude are quite different among the three NWP centers before, during, and after the recurvature of Sinlaku. In addition, it turns out that those variations cause a difference in the TC motion not only at the initial time but also during the subsequent forecast period. The ECMWF ensemble exhibits relatively large perturbation growth, which results from 1) the baroclinic energy conversion in a vortex, 2) the baroclinic energy conversion associated with the midlatitude waves, and 3) the barotropic energy conversion in a vortex. Those features are less distinctive in the NCEP ensemble. A statistical verification shows that the ensemble spread of TC track predictions in NCEP (ECMWF) is larger than ECMWF (NCEP) for 1- (3-) day forecasts on average. It can be inferred that while the ECMWF ensemble starts from a relatively small amplitude of initial perturbations, the growth of the perturbations helps to amplify the ensemble spread of tracks. On the other hand, a relatively large amplitude of initial perturbations seems to play a role in producing the ensemble spread of tracks in the NCEP ensemble.


2021 ◽  
pp. 1
Author(s):  
Lei Du ◽  
Riyu Lu

AbstractThe present study investigates the intraseasonal oscillations over the North Pacific during summer based on the ERA-Interim reanalysis dataset. It is shown that the main component of intraseasonal variations in meridional wind is dominated by 10–30-day variability. Zonally-oriented wave trains are identified over the North Pacific at this band, with a zonal wavenumber 6. The wave trains exhibit an equivalent-barotropic structure, with the maximum amplitude in the upper troposphere, and are manifested as quasi-stationary Rossby waves with the energy dispersing eastward. The wave trains do not show a phase-locking feature, that is, they have no preferred geographical locations in the zonal direction. Furthermore, energy analyses suggest that the intraseasonal waves gain energy through baroclinic energy conversion, while the barotropic energy conversion plays a negligible role. The present results have implications for better understanding and forecasting weather and climate in North America, since the intraseasonal waves over the North Pacific may act as precursory signals for extreme events occurring over North America.


Author(s):  
J. Michael Battalio

AbstractThe ability of Martian reanalysis datasets to represent the growth and decay of short-period (1.5 < P < 8 sol) transient eddies is compared across the Mars Analysis Correction Data Assimilation (MACDA), Open access to Mars Assimilated Remote Soundings (OpenMARS), and Ensemble Mars Reanalysis System (EMARS). Short-period eddies are predominantly surface-based, have the largest amplitudes in the northern hemisphere, and are found, in order of decreasing eddy kinetic energy amplitude, in Utopia, Acidalia, and Arcadia Planitae in the northern hemisphere, and south of the Tharsis Plateau and between Argyre and Hellas Basins in the southern hemisphere. Short-period eddies grow on the upstream (western) sides of basins via baroclinic energy conversion and by extracting energy from the mean flow and long-period (P > 8 sol) eddies when interacting with high relief. Overall, the combined impact of barotropic energy conversion is a net loss of eddy kinetic energy, which rectifies previous conflicting results. When Thermal Emission Spectrometer observations are assimilated (Mars years 24–27), all three reanalyses agree on eddy amplitude and timing, but during the Mars Climate Sounder (MCS) observational era (Mars years 28–33), eddies are less constrained. The EMARS ensemble member has considerably higher eddy generation than the ensemble mean, and bulk eddy amplitudes in the deterministic OpenMARS reanalysis agree with the EMARS ensemble rather than the EMARS member. Thus, analysis of individual eddies during the MCS era should only be performed when eddy amplitudes are large and when there is agreement across reanalyses.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Seul-Hee Im ◽  
Soon-Il An ◽  
Matthieu Lengaigne ◽  
Yign Noh

This study investigated the seasonality of tropical instability waves (TIWs) and its feedback to the seasonal cycle in the tropical eastern Pacific using a high-resolution ocean model covering 1958–2007. The climatological mean of the TIWs featured intraseasonal fluctuations, implying that TIWs are not occurring randomly, but their amplitude is partly in phase from one year to another. This seasonality of TIW activity is attributed to their dependency on the seasonal mean variation of current and temperature. Energy conversion analysis confirmed that the strong variability of TIWs near 4°N was due to the barotropic energy conversion associated with the large meridional shear of NECC and SEC and that at another pole near 2°N was due to the baroclinic energy conversion associated with the temperature front in the mixed layer. The former and latter poles are somehow largely responsible for amplifying the dynamic and thermal eddies of TIWs, respectively. The intensified TIWs during a boreal fall increase the tropical eastern Pacific SST by associating the warm thermal advection by anomalous currents, with a rate of up to 1°C/month in September. Therefore, this leads to interactive feedback between seasonal and intraseasonal variations, that is, TIWs in the tropical eastern Pacific.


2021 ◽  
Vol 149 (11) ◽  
pp. 3821-3835
Author(s):  
Rama Sesha Sridhar Mantripragada ◽  
C. J. Schreck III ◽  
Anantha Aiyyer

Abstract Perturbation kinetic and available energy budgets are used to explore how convectively coupled equatorial Kelvin waves (KWs) impact African easterly wave (AEW) activity. The convective phase of the Kelvin wave increases the African easterly jet’s meridional shear, thus enhancing the barotropic energy conversions, leading to intensification of southern track AEWs perturbation kinetic energy. In contrast, the barotropic energy conversion is reduced in the suppressed phase of KW. Baroclinic energy conversion of the southern track AEWs is not significantly different between Kelvin waves’ convective and suppressed phases. AEWs in the convective phase of a Kelvin wave have stronger perturbation available potential energy generation by diabatic heating and stronger baroclinic overturning circulations than in the suppressed phase of a Kelvin wave. These differences suggest that southern track AEWs within the convective phase of Kelvin waves have more vigorous convection than in the suppressed phase of Kelvin waves. Barotropic energy conversion of the northern track AEWs is not significantly different between Kelvin waves’ convective and suppressed phases. The convective phase of the Kelvin wave increases the lower-tropospheric meridional temperature gradient north of the African easterly jet, thus enhancing the baroclinic energy conversion, leading to intensification of northern track AEWs perturbation kinetic energy. In contrast, the baroclinic energy conversion is reduced in the suppressed phase of KW. These results provide a physical basis for the modulation of AEWs by Kelvin waves arriving from upstream.


Sign in / Sign up

Export Citation Format

Share Document