Energetics of Interactions between African Easterly Waves and Convectively Coupled Kelvin Waves

2021 ◽  
Vol 149 (11) ◽  
pp. 3821-3835
Author(s):  
Rama Sesha Sridhar Mantripragada ◽  
C. J. Schreck III ◽  
Anantha Aiyyer

Abstract Perturbation kinetic and available energy budgets are used to explore how convectively coupled equatorial Kelvin waves (KWs) impact African easterly wave (AEW) activity. The convective phase of the Kelvin wave increases the African easterly jet’s meridional shear, thus enhancing the barotropic energy conversions, leading to intensification of southern track AEWs perturbation kinetic energy. In contrast, the barotropic energy conversion is reduced in the suppressed phase of KW. Baroclinic energy conversion of the southern track AEWs is not significantly different between Kelvin waves’ convective and suppressed phases. AEWs in the convective phase of a Kelvin wave have stronger perturbation available potential energy generation by diabatic heating and stronger baroclinic overturning circulations than in the suppressed phase of a Kelvin wave. These differences suggest that southern track AEWs within the convective phase of Kelvin waves have more vigorous convection than in the suppressed phase of Kelvin waves. Barotropic energy conversion of the northern track AEWs is not significantly different between Kelvin waves’ convective and suppressed phases. The convective phase of the Kelvin wave increases the lower-tropospheric meridional temperature gradient north of the African easterly jet, thus enhancing the baroclinic energy conversion, leading to intensification of northern track AEWs perturbation kinetic energy. In contrast, the baroclinic energy conversion is reduced in the suppressed phase of KW. These results provide a physical basis for the modulation of AEWs by Kelvin waves arriving from upstream.

2009 ◽  
Vol 24 (6) ◽  
pp. 1524-1548 ◽  
Author(s):  
Robert S. Ross ◽  
T. N. Krishnamurti ◽  
S. Pattnaik ◽  
A. Simon

Abstract This paper provides an understanding of essential differences between developing and nondeveloping African easterly waves, which was a major goal of NAMMA, NASA’s field program in the eastern Atlantic, which functioned as an extension of the African Monsoon Multidisciplinary Analysis (AMMA) program during 2006. Three NAMMA waves are studied in detail using FNL analysis: NAMMA wave 2, which developed into Tropical Storm Debby; NAMMA wave 7, which developed into Hurricane Helene; and NAMMA wave 4, which did not develop within the NAMMA domain. Diagnostic calculations are performed on the analyzed fields using energy transformation equations and the isentropic potential vorticity equation. The results show that the two developing waves possess clear and robust positive barotropic energy conversion in conjunction with positive diabatic heating that includes a singular burst of heating at a particular time in the wave’s history. This positive barotropic energy conversion is facilitated in waves that have a northeast–southwest tilt to the trough axis and a wind maximum to the west of this axis. The nondeveloping wave is found to have the same singular burst of diabatic heating at one point in its history, but development of the wave does not occur due to negative barotropic energy conversion. Such conversion is facilitated by a northwest–southeast tilt to the trough axis and a wind maximum to the east of this axis. The conclusions about wave development and nondevelopment formulated in this research are viewed as important and significant, but they require additional testing with detailed observational- and numerical-based studies.


Author(s):  
J. Michael Battalio

AbstractThe ability of Martian reanalysis datasets to represent the growth and decay of short-period (1.5 < P < 8 sol) transient eddies is compared across the Mars Analysis Correction Data Assimilation (MACDA), Open access to Mars Assimilated Remote Soundings (OpenMARS), and Ensemble Mars Reanalysis System (EMARS). Short-period eddies are predominantly surface-based, have the largest amplitudes in the northern hemisphere, and are found, in order of decreasing eddy kinetic energy amplitude, in Utopia, Acidalia, and Arcadia Planitae in the northern hemisphere, and south of the Tharsis Plateau and between Argyre and Hellas Basins in the southern hemisphere. Short-period eddies grow on the upstream (western) sides of basins via baroclinic energy conversion and by extracting energy from the mean flow and long-period (P > 8 sol) eddies when interacting with high relief. Overall, the combined impact of barotropic energy conversion is a net loss of eddy kinetic energy, which rectifies previous conflicting results. When Thermal Emission Spectrometer observations are assimilated (Mars years 24–27), all three reanalyses agree on eddy amplitude and timing, but during the Mars Climate Sounder (MCS) observational era (Mars years 28–33), eddies are less constrained. The EMARS ensemble member has considerably higher eddy generation than the ensemble mean, and bulk eddy amplitudes in the deterministic OpenMARS reanalysis agree with the EMARS ensemble rather than the EMARS member. Thus, analysis of individual eddies during the MCS era should only be performed when eddy amplitudes are large and when there is agreement across reanalyses.


2012 ◽  
Vol 140 (3) ◽  
pp. 748-773 ◽  
Author(s):  
Robert S. Ross ◽  
T. N. Krishnamurti ◽  
S. Pattnaik

Abstract This paper defines a mechanism for the genesis of tropical cyclones from African easterly waves (AEWs) over the eastern Atlantic, the so-called Cape Verde storms. Convective “superbursts” produce strong diabatic heating, which then strengthens the African easterly jet (AEJ), leading to enhanced barotropic energy conversions, which occur at the critical developmental stages of the system. Diabatic heating is calculated using the Ertel isentropic potential vorticity (IPV) equation, while energy conversions are determined using energy equations first derived by Lorenz. The genesis mechanism is developed from studying Hurricane Bill (2009), as well as Tropical Storm Debby, Hurricane Helene, and a nondeveloping AEW, all from the 2006 NASA African Monsoon Multidisciplinary Analysis (NAMMA) field experiment, using the NCEP Final (FNL) analyses and the Advanced Research Weather Research and Forecasting model (WRF-ARW) simulations. A striking and singular maximum in the diabatic heating due to the convective superburst is shown to precede by 24–36 h a pronounced maximum in positive barotropic energy conversion, which is demonstrated to occur simultaneously with the strengthening of the AEJ. The maximum in barotropic energy conversion is documented to occur in the developmental stages of the system, typically in the depression or early storm stages. A physical mechanism is developed to explain how a mesoscale convective superburst can lead subsequently to an enhanced synoptic-scale AEJ over the eastern Atlantic, an enhanced jet that is critical to the genesis mechanism. The findings agree with cited idealized studies by other investigators who found that moist AEWs grow 3 times stronger than dry waves as a result of faster AEJ development and larger barotropic energy conversions.


2011 ◽  
Vol 24 (3) ◽  
pp. 927-941 ◽  
Author(s):  
Pang-chi Hsu ◽  
Tim Li ◽  
Chih-Hua Tsou

Abstract The role of scale interactions in the maintenance of eddy kinetic energy (EKE) during the extreme phases of the intraseasonal oscillation (ISO) is examined through the construction of a new eddy energetics diagnostic tool that separates the effects of ISO and a low-frequency background state (LFBS; with periods longer than 90 days). The LFBS always contributes positively toward the EKE in the boreal summer, regardless of the ISO phases. The synoptic eddies extract energy from the ISO during the ISO active phase. This positive barotropic energy conversion occurs when the synoptic eddies interact with low-level cyclonic and convergent–confluent ISO flows. This contrasts with the ISO suppressed phase during which the synoptic eddies lose kinetic energy to the ISO flow. The anticyclonic and divergent–diffluent ISO flows during the suppressed phase are responsible for the negative barotropic energy conversion. A positive (negative) EKE tendency occurs during the ISO suppressed-to-active (active-to-suppressed) transitional phase. The cause of this asymmetric EKE tendency is attributed to the spatial phase relation among the ISO vorticity, eddy structure, and EKE. The southwest–northeast-tilted synoptic disturbances interacting with cyclonic (anticyclonic) vorticity of ISO lead to a positive (negative) EKE tendency in the northwest region of the maximum EKE center. The genesis number and location and intensification rate of tropical cyclones in the western North Pacific are closely related to the barotropic energy conversion. The enhanced barotropic energy conversion favors the generation and development of synoptic seed disturbances, some of which eventually grow into tropical cyclones.


Ocean Science ◽  
2011 ◽  
Vol 7 (4) ◽  
pp. 503-519 ◽  
Author(s):  
R. Sorgente ◽  
A. Olita ◽  
P. Oddo ◽  
L. Fazioli ◽  
A. Ribotti

Abstract. The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean region has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products. The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre. The classical kinetic energy decomposition (eddy and mean) allowed to depict and to quantify the permanent and fluctuating parts of the circulation in the region, and to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.


2011 ◽  
Vol 8 (3) ◽  
pp. 1161-1214 ◽  
Author(s):  
R. Sorgente ◽  
A. Olita ◽  
P. Oddo ◽  
L. Fazioli ◽  
A. Ribotti

Abstract. The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean Sea has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products. The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions composing the model domain, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre. The classical the kinetic energy decomposition (eddy and mean) allowed to depict and to quantify the stable and fluctuating parts of the circulation in the region, and to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.


2015 ◽  
Vol 143 (10) ◽  
pp. 3996-4011 ◽  
Author(s):  
Carl J. Schreck

Abstract Convectively coupled atmospheric Kelvin waves are among the most prominent sources of synoptic-scale rainfall variability in the tropics, but large uncertainties surround their role in tropical cyclogenesis. This study identifies the modulation of tropical cyclones relative to the passage of a Kelvin wave’s peak rainfall (i.e., its crest) in each basin. Tropical cyclogenesis is generally inhibited for 3 days before the crest and enhanced for 3 days afterward. Composites of storms forming in the most favorable lags illustrate the dynamical impacts of the waves. In most basins, the tropical cyclone actually forms during the convectively suppressed phase of the wave. The 850-hPa equatorial westerly anomalies provide the cyclonic vorticity for the nascent storm, and 200-hPa easterly anomalies enhance the outflow. The wind anomalies persist at both levels longer than the Kelvin wave’s period and are often related to the Madden–Julian oscillation (MJO). The onset of these wind anomalies occurs with the Kelvin wave passage, while the MJO apparently establishes their duration. Many of the composites also show evidence of an easterly wave from which the tropical cyclone develops. The composite easterly wave amplifies or even initiates within the Kelvin wave crest. These results show the importance of Kelvin waves interacting with the MJO and easterly waves during tropical cyclogenesis. Given that Kelvin waves often circumnavigate the globe, these results show promise for long-range forecasting of tropical cyclogenesis in all basins.


2013 ◽  
Vol 70 (11) ◽  
pp. 3492-3512 ◽  
Author(s):  
Michael Diaz ◽  
Anantha Aiyyer

Abstract A genesis mechanism for African easterly waves (AEWs) is proposed. In the same manner that new troughs and ridges in the midlatitudes form downstream of existing ones through a mechanism known as downstream development, it is proposed that new AEWs can be generated upstream of existing AEWs. A local eddy kinetic energy budget of the AEW that ultimately became Hurricane Alberto (2000) demonstrates that upstream development explains its genesis more convincingly than previous theories of AEW genesis. The energetics and ageostrophic secondary circulation of a composite AEW are consistent with a new AEW forming as a result of this mechanism. Some strengths and weaknesses of upstream development as a paradigm for AEW genesis are discussed with respect to other potential mechanisms.


2014 ◽  
Vol 27 (10) ◽  
pp. 3750-3766 ◽  
Author(s):  
Chih-Hua Tsou ◽  
Huang-Hsiung Hsu ◽  
Pang-Chi Hsu

Abstract This study formulates a synoptic-scale eddy (SSE) kinetic energy equation by partitioning the original field into seasonal mean circulation, intraseasonal oscillation (ISO), and SSEs to examine the multiscale interactions over the western North Pacific (WNP) in autumn. In addition, the relative contribution of synoptic-mean and synoptic-ISO interactions to SSE kinetic energy was quantitatively estimated by further separating barotropic energy conversion (CK) into synoptic-mean barotropic energy conversion (CKS−M) and synoptic-ISO barotropic energy conversion (CKS−ISO) components. The development of tropical SSE in the lower troposphere is mainly attributed to CK associated with multiscale interactions. Mean cyclonic circulation in the lower troposphere consistently provides kinetic energy to SSEs (CKS−M &gt; 0) during the ISO westerly and easterly phases. However, CKS−ISO during the ISO westerly and easterly phases differs considerably. During the ISO westerly phase, the enhanced ISO cyclonic flow converts energy to SSEs (CKS−ISO &gt; 0). The magnitude of the downscale energy conversion from mean and ISO to SSEs is related to the strength of the SSEs. During the ISO westerly phase, a stronger SSE extracts more kinetic energy from mean and ISO circulation. This positive feedback between SSE-mean and SSE–ISO interactions causes further strengthening of SSEs during the ISO westerly phase. By contrast, upscale energy conversion from SSEs to ISO anticyclonic flow (CKS−ISO &lt; 0) was observed during the ISO easterly phase. The weaker SSE activity during the ISO easterly phase occurred because the mean circulation provides less energy to SSEs and, at the same time, SSEs lose energy to ISO during the ISO easterly phase. The two-way interaction between the ISO and SSEs has considerable effects on the development of tropical SSEs over the WNP in autumn.


MAUSAM ◽  
2021 ◽  
Vol 67 (2) ◽  
pp. 493-498
Author(s):  
SOMENATH DUTTA ◽  
D. M. RASE ◽  
SUNITHA DEVI

An attempt has been made to study dynamics of consecutive weak/strong spell of north east monsoon for the years, 2009 and 2010 from an energetics aspect.  For that different energy terms, their generation and conversion among different energy terms have been computed for consecutive weak and strong phases during Oct to Dec of the above two years over a limited region between 70 °E to 85 °E, 5 °N to 20 °N. These computations are based on daily NCEP 2.5° × 2.5° data for the same period. The transition from weak phase to strong phase of north east monsoon (NEM) observed to be associated with an enhancement in conversion of zonal available potential energy (Az) to zonal kinetic energy (Kz), implying a strengthening of Hadley circulation, favouring the above transition. It is also observed that the transition from weak phase to strong phase is associated with enhanced Baroclinic energy conversion  


Sign in / Sign up

Export Citation Format

Share Document