One year of MAX-DOAS measurements of tropospheric trace gases and aerosols in the suburban area of London

Author(s):  
Sebastian Donner ◽  
Steffen Dörner ◽  
Joelle Buxmann ◽  
Steffen Beirle ◽  
David Campbell ◽  
...  

<p>Multi-AXis (MAX)-DOAS instruments record spectra of scattered sun light under different elevation angles. From such measurements tropospheric vertical column densities (VCDs) and vertical profiles of different atmospheric trace gases and aerosols can be determined for the lower troposphere. These measurements allow a simultaneous observation of multiple trace gases (e.g. HCHO, CHOCHO, NO<sub>2</sub>, etc.) with the same measurement setup. Since November 2018, a MAX-DOAS instrument is operated at the Bayfordbury Observatory, which is located approximately 30 km north of London. This measurement site is operated by the University of Hertfordshire and equipped with an AERONET station, a LIDAR and multiple instruments to measure meteorological quantities and solar radiation. Depending on the prevailing wind direction the air masses at the measurement site can be dominated by the pollution of London (SE to SW winds) or rather pristine air (northerly winds). Therefore, this measurement site is well suited to study the influence of anthropogenic pollution on the atmospheric composition and chemistry at a rather pristine location in the vicinity of London, a major European capital with 9.8 million inhabitants and 4 major international airports.</p><p>In this study, trace gas and aerosol profiles are retrieved using the MAinz Profile Algorithm MAPA (Beirle et al., 2018) with a focus on tropospheric formaldehyde (HCHO) which plays an important role in tropospheric chemistry. The HCHO results are combined with the results of other trace species such as NO<sub>2</sub>, CHOCHO and aerosols in order to identify different chemical regimes and pollution levels.</p>

2021 ◽  
Author(s):  
Sebastian Donner ◽  
Steffen Dörner ◽  
Joelle Buxmann ◽  
Steffen Beirle ◽  
David Campbell ◽  
...  

<p>Multi-AXis (MAX)-Differential Optical Absorption Spectroscopy (DOAS) instruments record spectra of scattered sun light under different elevation angles. From such measurements tropospheric vertical column densities (VCDs) and vertical profiles of different atmospheric trace gases and aerosols can be determined for the lower troposphere. These measurements allow a simultaneous observation of multiple trace gases, e.g. formaldehyde (HCHO), glyoxal (CHOCHO) and nitrogen dioxide (NO<sub>2</sub>), with the same measurement setup. Since November 2018, a MAX-DOAS instrument has been operating at Bayfordbury Observatory, which is located approximately 30 km north of London. This measurement site is operated by the University of Hertfordshire and equipped with an AERONET station, a LIDAR and multiple instruments to measure meteorological quantities and solar radiation. Depending on the prevailing wind direction the air masses at the measurement site can be dominated by the pollution of London (SE to SW winds) or rather pristine air (northerly winds).</p><p>First results already showed that the highest formaldehyde and glyoxal columns are observed for southerly to southeasterly winds indicating the influence of the anthropogenic emissions of London. However, the detailed patterns of the different trace gases were found to be more complex. Therefore, this measurement site is well suited to study the influence of anthropogenic pollution on the atmospheric composition and chemistry at a rather pristine location in the vicinity of London, a major European capital with about 10 million inhabitants and 4 major international airports.</p><p>In this study, trace gas and aerosol profiles are retrieved using the MAinz Profile Algorithm (MAPA) with a focus on tropospheric HCHO which plays an important role in tropospheric chemistry. The HCHO results are combined with the results of other trace species such as NO<sub>2</sub>, CHOCHO and aerosols in order to identify pollution levels, emission sources and different chemical regimes.</p>


2020 ◽  
Vol 20 (11) ◽  
pp. 6973-6990 ◽  
Author(s):  
Jianzhong Ma ◽  
Steffen Dörner ◽  
Sebastian Donner ◽  
Junli Jin ◽  
Siyang Cheng ◽  
...  

Abstract. Mt. Waliguan Observatory (WLG) is a World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) global baseline station in China. WLG is located at the northeastern part of the Tibetan Plateau (36∘17′ N, 100∘54′ E, 3816 m a.s.l.) and is representative of the pristine atmosphere over the Eurasian continent. We made long-term ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements at WLG during the period 2012–2015. In this study, we retrieve the differential slant column densities (dSCDs) and estimate the tropospheric background mixing ratios of different trace gases, including NO2, SO2, HCHO, and BrO, using the measured spectra at WLG. Averaging of 10 original spectra is found to be an “optimum option” for reducing both the statistical error of the spectral retrieval and systematic errors in the analysis. The dSCDs of NO2, SO2, HCHO, and BrO under clear-sky and low-aerosol-load conditions are extracted from measured spectra at different elevation angles at WLG. By performing radiative transfer simulations with the model TRACY-2, we establish approximate relationships between the trace gas dSCDs at 1∘ elevation angle and the corresponding average tropospheric background volume mixing ratios. Mixing ratios of these trace gases in the lower troposphere over WLG are estimated to be in a range of about 7 ppt (January) to 100 ppt (May) for NO2, below 0.5 ppb for SO2, between 0.4 and 0.9 ppb for HCHO, and lower than 0.3 ppt for BrO. The chemical box model simulations constrained by the NO2 concentration from our MAX-DOAS measurements show that there is a little net ozone loss (−0.8 ppb d−1) for the free-tropospheric conditions and a little net ozone production (0.3 ppb d−1) for the boundary layer conditions over WLG during summertime. Our study provides valuable information and data sets for further investigating tropospheric chemistry in the background atmosphere and its links to anthropogenic activities.


2018 ◽  
Vol 11 (1) ◽  
pp. 551-567 ◽  
Author(s):  
Alexis Merlaud ◽  
Frederik Tack ◽  
Daniel Constantin ◽  
Lucian Georgescu ◽  
Jeroen Maes ◽  
...  

Abstract. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV). SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm × 12 cm × 8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h−1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67∘ N, 23.41∘ E; 116 ma.s.l.). These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP), and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs) up to 13±0.6×1016 molec cm−2. These NO2 DSCDs are converted to vertical column densities (VCDs) by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm−2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm−2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol−1. These geophysical quantities are validated with the coincident measurements.


Author(s):  
Michael J Prather

Atmospheric composition is controlled by the emission, photochemistry and transport of many trace gases. Understanding the time scale as well as the chemical and spatial patterns of perturbations to trace gases is needed to evaluate possible environmental damage (e.g. stratospheric ozone depletion or climate change) caused by anthropogenic emissions. This paper reviews lessons learned from treating global atmospheric chemistry as a linearized system and analysing it in terms of eigenvalues. The results give insight into how emissions of one trace species cause perturbations to another and how transport and chemistry can alter the time scale of the overall perturbation. Further, the eigenvectors describe the fundamental chemical modes, or patterns, of the atmosphere's chemical response to perturbations.


2017 ◽  
Author(s):  
Alexis Merlaud ◽  
Frederik Tack ◽  
Daniel Constantin ◽  
Lucian Georgescu ◽  
Jeroen Maes ◽  
...  

Abstract. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a compact remote sensing instrument dedicated to mapping trace gases from an Unmanned Aerial Vehicle (UAV). SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 x 12 x 8 cm3, and 6 W. SWING was developed in parallel with a 2.5 m flying wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h−1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67° N, 23.41° E, 116 m a.s.l.). These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging Differential Optical Absorption Spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP), and with ground-based DOAS, lidar, and balloone-borne in-situ observations. The spectra recorded during the SWING-UAV flights are analyzed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs) up to 13 ± 0.6 x 1016 molec cm−2. These NO2 DSCDs are converted to vertical column densities (VCDs) by estimating air mass factors. The resulting NO2 VCDs are up to 4.7 ± 0.4 x 1016 molec cm−2. The water vapor DSCD measurements, up to 8 ± 0.15 x 1022 molec cm−2, are used to estimate a volume mixing ratio of water vapor in the boundary layer of 0.013 ± 0.002 mol mol−1. These geophysical quantities are validated with the coincident measurements.


2021 ◽  
Vol 13 (12) ◽  
pp. 2244
Author(s):  
Zeeshan Javed ◽  
Aimon Tanvir ◽  
Muhammad Bilal ◽  
Wenjing Su ◽  
Congzi Xia ◽  
...  

Recently, the occurrence of fog and haze over China has increased. The retrieval of trace gases from the multi-axis differential optical absorption spectroscopy (MAX-DOAS) is challenging under these conditions. In this study, various reported retrieval settings for formaldehyde (HCHO) and sulfur dioxide (SO2) are compared to evaluate the performance of these settings under different meteorological conditions (clear day, haze, and fog). The dataset from 1st December 2019 to 31st March 2020 over Nanjing, China, is used in this study. The results indicated that for HCHO, the optimal settings were in the 324.5–359 nm wavelength window with a polynomial order of five. At these settings, the fitting and root mean squared (RMS) errors for column density were considerably improved for haze and fog conditions, and the differential slant column densities (DSCDs) showed more accurate values compared to the DSCDs between 336.5 and 359 nm. For SO2, the optimal settings for retrieval were found to be at 307–328 nm with a polynomial order of five. Here, root mean square (RMS) and fitting errors were significantly lower under all conditions. The observed HCHO and SO2 vertical column densities were significantly lower on fog days compared to clear days, reflecting a decreased chemical production of HCHO and aqueous phase oxidation of SO2 in fog droplets.


Author(s):  
Paul I Palmer

We have been observing the Earth's upper atmosphere from space for several decades, but only over the past decade has the necessary technology begun to match our desire to observe surface air pollutants and climate-relevant trace gases in the lower troposphere, where we live and breathe. A new generation of Earth-observing satellites, capable of probing the lower troposphere, are already orbiting hundreds of kilometres above the Earth's surface with several more ready for launch or in the planning stages. Consequently, this is one of the most exciting times for the Earth system scientists who study the countless current-day physical, chemical and biological interactions between the Earth's land, ocean and atmosphere. First, I briefly review the theory behind measuring the atmosphere from space, and how these data can be used to infer surface sources and sinks of trace gases. I then present some of the science highlights associated with these data and how they can be used to improve fundamental understanding of the Earth's climate system. I conclude the paper by discussing the future role of satellite measurements of tropospheric trace gases in mitigating surface air pollution and carbon trading.


2015 ◽  
Vol 15 (6) ◽  
pp. 8687-8770
Author(s):  
K. Miyazaki ◽  
H. J. Eskes ◽  
K. Sudo

Abstract. We present the results from an eight-year tropospheric chemistry reanalysis for the period 2005–2012 obtained by assimilating multiple retrieval data sets from the OMI, MLS, TES, and MOPITT satellite instruments. The reanalysis calculation was conducted using a global chemical transport model and an ensemble Kalman filter technique that simultaneously optimises the chemical concentrations of various species and emissions of several precursors. The optimisation of both the concentration and the emission fields is an efficient method to correct the entire tropospheric profile and its year-to-year variations, and to adjust various tracers chemically linked to the species assimilated. Comparisons against independent aircraft, satellite, and ozonesonde observations demonstrate the quality of the analysed O3, NO2, and CO concentrations on regional and global scales and for both seasonal and year-to-year variations from the lower troposphere to the lower stratosphere. The data assimilation statistics imply persistent reduction of model error and improved representation of emission variability, but also show that discontinuities in the availability of the measurements lead to a degradation of the reanalysis. The decrease in the number of assimilated measurements increased the ozonesonde minus analysis difference after 2010 and caused spurious variations in the estimated emissions. The Northern/Southern Hemisphere OH ratio was modified considerably due to the multiple species assimilation and became closer to an observational estimate, which played an important role in propagating observational information among various chemical fields and affected the emission estimates. The consistent concentration and emission products provide unique information on year-to-year variations of the atmospheric environment.


2008 ◽  
Vol 25 (11) ◽  
pp. 2028-2036 ◽  
Author(s):  
C. Paton-Walsh ◽  
R. L. Mittermeier ◽  
W. Bell ◽  
H. Fast ◽  
N. B. Jones ◽  
...  

Abstract The authors report the results of an intercomparison of vertical column amounts of hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N2O), nitric acid (HNO3), methane (CH4), ozone (O3), carbon dioxide (CO2), and nitrogen (N2) derived from the spectra recorded by two ground-based Fourier transform infrared (FTIR) spectrometers operated side-by-side using the sun as a source. The procedure used to record spectra and derive vertical column amounts follows the format of previous instrument intercomparisons organized by the Network for the Detection of Atmospheric Composition Change (NDACC), formerly known as the Network for Detection of Stratospheric Change (NDSC). For most gases the differences were typically around 3%, and in about half of the results the error bars given by the standard deviation of the measurements from each instrument did not overlap. The worst level of agreement was for HF where differences of over 5% were typical. The level of agreement achieved during this intercomparison is a little worse than that achieved in previous intercomparisons between ground-based FTIR spectrometers.


Sign in / Sign up

Export Citation Format

Share Document