Resolution Dependency of Future Caribbean Sea Level Response

Author(s):  
René van Westen ◽  
Henk Dijkstra

<div> <div> <div> <p>The current global climate models, which are often used in inter-comparison projects, have a large variety in their spatial resolution. For most climate models, the resolution of the ocean grid does not allow to resolve mesoscale processes such as ocean eddies. Current sea level projections are based on these coarse climate models, but might have biases (either positive or negative) in these projections since mesoscale processes are parameterised.</p> <p>Here we investigate the differences in future Caribbean sea level rise using a centennial simulation of a high- and low-resolution version of the Community Earth System Model under the same anthropogenic forcing. In the high-resolution version of the model mesoscale processes are resolved. Locally, we find a decrease of 7.2 cm in sea level extremes over a 100-year period in the high-resolution version; this decrease is almost absent in the low-resolution version. This local decrease in sea level extremes is related to ocean eddies, which are not resolved in the low-resolution version, hence explaining the different sea level response between the models. When comparing modelled sea level trends to observed sea level trends over the past 25 years, we find a reasonable agreement between observations and the high-resolution model. However, for the low-resolution model and some of the preliminary CMIP6 model output, there is a substantial mismatch between the observed- and modelled sea level trends.</p> <p>By analysing model output from two different resolutions of the same climate model, we find that the sea level response in the Caribbean Sea is resolution-dependent. As a result, not resolving mesoscale processes in climate models can locally result in overestimations of future sea level rise projections.</p> </div> </div> </div>

2020 ◽  
Author(s):  
Samuel Helsen ◽  
Sam Vanden Broucke ◽  
Alexandra Gossart ◽  
Niels Souverijns ◽  
Nicole van Lipzig

<p>The Totten glacier is a highly dynamic outlet glacier, situated in E-Antarctica, that contains a potential sea level rise of about 3.5 meters. During recent years, this area has been influenced by sub-shelf intrusion of warm ocean currents, contributing to higher basal melt rates. Moreover, most of the ice over this area is grounded below sea level, which makes the ice shelf potentially vulnerable to the marine ice sheet instability mechanism. It is expected that, as a result of climate change, the latter mechanisms may contribute to significant ice losses in this region within the next decades, thereby contributing to future sea level rise. Up to now, most studies have been focusing on sub-shelf melt rates and the influence of the ocean, with much less attention for atmospheric processes (often ignored), which also play a key-role in determining the climatic conditions over this region. For example: surface melt is important because it contributes to hydrofracturing, a process that may lead to ice cliff instabilities. Also precipitation is an important atmospheric process, since it determines the input of mass to the ice sheet and contributes directly to the surface mass balance. In order to perform detailed studies on these processes, we need a well-evaluated climate model that represents all these processes well. Recently, the COSMO-CLM<sup>2</sup> (CCLM<sup>2</sup>) model was adapted to the climatological conditions over Antarctica. The model was evaluated by comparing a 30 year Antarctic-wide hindcast run (1986-2016) at 25 km resolution with meteorological observational products (Souverijns et al., 2019). It was shown that the model performance is comparable to other state-of-the-art regional climate models over the Antarctic region. We now applied the CCLM<sup>2</sup> model in a regional configuration over the Totten glacier area (E-Antarctica) at 5 km resolution and evaluated its performance over this region by comparing it to climatological observations from different stations. We show that the performance for temperature in the high resolution run is comparable to the performance of the Antarctic-wide run. Precipitation is, however, overestimated in the high-resolution run, especially over dome structures (Law-Dome). Therefore, we applied an orographic smoothening, which clearly improves the precipitation pattern with respect to observations. Wind speed is overestimated in some places, which is solved by increasing the surface roughness. This research frames in the context of the PARAMOUR project. Within PARAMOUR, CCLM<sup>2 </sup>is currently being coupled to an ocean model (NEMO) and an ice sheet model (f.ETISh/BISICLES) in order to understand decadal predictability over this region.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Yong-Yub Kim ◽  
Bong-Gwan Kim ◽  
Kwang Young Jeong ◽  
Eunil Lee ◽  
Do-Seong Byun ◽  
...  

Global climate models (GCMs) have limited capacity in simulating spatially non-uniform sea-level rise owing to their coarse resolutions and absence of tides in the marginal seas. Here, regional ocean climate models (RCMs) that consider tides were used to address these limitations in the Northwest Pacific marginal seas through dynamical downscaling. Four GCMs that drive the RCMs were selected based on a performance evaluation along the RCM boundaries, and the latter were validated by comparing historical results with observations. High-resolution (1/20°) RCMs were used to project non-uniform changes in the sea-level under intermediate (RCP 4.5) and high-end emissions (RCP 8.5) scenarios from 2006 to 2100. The predicted local sea-level rise was higher in the East/Japan Sea (EJS), where the currents and eddy motions were active. The tidal amplitude changes in response to sea-level rise were significant in the shallow areas of the Yellow Sea (YS). Dynamically downscaled simulations enabled the determination of practical sea-level rise (PSLR), including changes in tidal amplitude and natural variability. Under RCP 8.5 scenario, the maximum PSLR was ∼85 cm in the YS and East China Sea (ECS), and ∼78 cm in the EJS. The contribution of natural sea-level variability changes in the EJS was greater than that in the YS and ECS, whereas changes in the tidal contribution were higher in the YS and ECS. Accordingly, high-resolution RCMs provided spatially different PSLR estimates, indicating the importance of improving model resolution for local sea-level projections in marginal seas.


2018 ◽  
Vol 31 (17) ◽  
pp. 6711-6727 ◽  
Author(s):  
Xiaolong Chen ◽  
Peili Wu ◽  
Malcolm J. Roberts ◽  
Tianjun Zhou

The amount of rainfall during June and July along the mei-yu front contributes about 45% to the total summer precipitation over the Yangtze River valley. How it will change under global warming is of great concern to the people of China because of its particular socioeconomic importance, but climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) show large uncertainties. This paper examines model resolution sensitivity and reports large differences in projected future summer rainfall along the mei-yu front between a low-resolution (Gaussian N96 grid, ~1.5° latitude–longitude) and a high-resolution (N216, ~0.7°) version of the Hadley Centre’s latest climate model, the HadGEM3 Global Coupled Configuration 2.0 (HadGEM3-GC2). The high-resolution model projects large increases of summer rainfall under two representative concentration pathway scenarios (RCP8.5 and RCP4.5) whereas the low-resolution model shows a decrease. A larger increase of projected mei-yu rainfall in higher-resolution models is also observed across the CMIP5 ensemble. These differences can be explained in terms of enhanced moist static energy advection and moisture convergence by stationary eddies in the high-resolution model. A large-scale manifestation of the anomalous stationary eddies is the contrasting response to the same warming scenario by the western North Pacific subtropical high, which is almost unchanged in N216 but retreats evidently eastward in N96, reducing the southwesterly flow and consequently moisture supply to the mei-yu front. Further increases in model resolution to resolve parameterized processes and detailed orographic features will hopefully reduce the spread in future climate projections.


2016 ◽  
Vol 29 (24) ◽  
pp. 8763-8781 ◽  
Author(s):  
Paul D. Williams ◽  
Nicola J. Howe ◽  
Jonathan M. Gregory ◽  
Robin S. Smith ◽  
Manoj M. Joshi

Abstract In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere–ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations.


Author(s):  
Koujiro TSUCHIDA ◽  
Makoto TAMURA ◽  
Naoko KUMANO ◽  
Eiji MASUNAGA ◽  
Hiromune YOKOKI

2021 ◽  
Author(s):  
Tamsin Edwards ◽  

<p><strong>The land ice contribution to global mean sea level rise has not yet been predicted with ice sheet and glacier models for the latest set of socio-economic scenarios (SSPs), nor with coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects (ISMIP6 and GlacierMIP) generated a large suite of projections using multiple models, but mostly used previous generation scenarios and climate models, and could not fully explore known uncertainties. </strong></p><p><strong>Here we estimate probability distributions for these projections for the SSPs using Gaussian Process emulation of the ice sheet and glacier model ensembles. We model the sea level contribution as a function of global mean surface air temperature forcing and (for the ice sheets) model parameters, with the 'nugget' allowing for multi-model structural uncertainty. Approximate independence of ice sheet and glacier models is assumed, because a given model responds very differently under different setups (such as initialisation). </strong></p><p><strong>We find that limiting global warming to 1.5</strong>°<strong>C </strong><strong>would halve the land ice contribution to 21<sup>st</sup> century </strong><strong>sea level rise</strong><strong>, relative to current emissions pledges: t</strong><strong>he median decreases from 25 to 13 cm sea level equivalent (SLE) by 2100. However, the Antarctic contribution does not show a clear response to emissions scenario, due to competing processes of increasing ice loss and snowfall accumulation in a warming climate. </strong></p><p><strong>However, under risk-averse (pessimistic) assumptions for climate and Antarctic ice sheet model selection and ice sheet model parameter values, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 cm SLE under current policies and pledges, with the 95<sup>th</sup> percentile exceeding half a metre even under 1.5</strong>°<strong>C warming. </strong></p><p><strong>Gaussian Process emulation can therefore be a powerful tool for estimating probability density functions from multi-model ensembles and testing the sensitivity of the results to assumptions.</strong></p>


2017 ◽  
Vol 21 (4) ◽  
pp. 2187-2201 ◽  
Author(s):  
Pere Quintana-Seguí ◽  
Marco Turco ◽  
Sixto Herrera ◽  
Gonzalo Miguez-Macho

Abstract. Offline land surface model (LSM) simulations are useful for studying the continental hydrological cycle. Because of the nonlinearities in the models, the results are very sensitive to the quality of the meteorological forcing; thus, high-quality gridded datasets of screen-level meteorological variables are needed. Precipitation datasets are particularly difficult to produce due to the inherent spatial and temporal heterogeneity of that variable. They do, however, have a large impact on the simulations, and it is thus necessary to carefully evaluate their quality in great detail. This paper reports the quality of two high-resolution precipitation datasets for Spain at the daily time scale: the new SAFRAN-based dataset and Spain02. SAFRAN is a meteorological analysis system that was designed to force LSMs and has recently been extended to the entirety of Spain for a long period of time (1979/1980–2013/2014). Spain02 is a daily precipitation dataset for Spain and was created mainly to validate regional climate models. In addition, ERA-Interim is included in the comparison to show the differences between local high-resolution and global low-resolution products. The study compares the different precipitation analyses with rain gauge data and assesses their temporal and spatial similarities to the observations. The validation of SAFRAN with independent data shows that this is a robust product. SAFRAN and Spain02 have very similar scores, although the latter slightly surpasses the former. The scores are robust with altitude and throughout the year, save perhaps in summer when a diminished skill is observed. As expected, SAFRAN and Spain02 perform better than ERA-Interim, which has difficulty capturing the effects of the relief on precipitation due to its low resolution. However, ERA-Interim reproduces spells remarkably well in contrast to the low skill shown by the high-resolution products. The high-resolution gridded products overestimate the number of precipitation days, which is a problem that affects SAFRAN more than Spain02 and is likely caused by the interpolation method. Both SAFRAN and Spain02 underestimate high precipitation events, but SAFRAN does so more than Spain02. The overestimation of low precipitation events and the underestimation of intense episodes will probably have hydrological consequences once the data are used to force a land surface or hydrological model.


2019 ◽  
Vol 49 (5) ◽  
pp. 1159-1181 ◽  
Author(s):  
Christopher Danek ◽  
Patrick Scholz ◽  
Gerrit Lohmann

AbstractThe influence of a high horizontal resolution (5–15 km) on the general circulation and hydrography in the North Atlantic is investigated using the Finite Element Sea Ice–Ocean Model (FESOM). We find a stronger shift of the upper-ocean circulation and water mass properties during the model spinup in the high-resolution model version compared to the low-resolution (~1°) control run. In quasi equilibrium, the high-resolution model is able to reduce typical low-resolution model biases. Especially, it exhibits a weaker salinification of the North Atlantic subpolar gyre and a reduced mixed layer depth in the Labrador Sea. However, during the spinup adjustment, we see that initially improved high-resolution features partially reduce over time: the strength of the Atlantic overturning and the path of the North Atlantic Current are not maintained, and hence hydrographic biases known from low-resolution ocean models return in the high-resolution quasi-equilibrium state. We identify long baroclinic Rossby waves as a potential cause for the strong upper-ocean adjustment of the high-resolution model and conclude that a high horizontal resolution improves the state of the modeled ocean but the model integration length should be chosen carefully.


2005 ◽  
Vol 19 (2) ◽  
pp. 482-491 ◽  
Author(s):  
MARIANNE R. FISH ◽  
ISABELLE M. COTE ◽  
JENNIFER A. GILL ◽  
ANDREW P. JONES ◽  
SASKIA RENSHOFF ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document