The Simulation of Drifting Dead Pigs in the Sea

Author(s):  
Yong-Jun Lin ◽  
Chih-Chung Wen ◽  
Kai-Yuan Ke ◽  
Yih-Chi Tan

<p>In 2017, dead pigs infected with African swine fever were found on the beach of Tianpu, Kinmen, an offshore island of Taiwan. After the event, the Kinmen government carried out a thorough pig farm quarantine. However, none infected pig was found in any of the pig farms. This study aims to identify where the dead infected pig came from. Affected by ocean currents, marine drifts can often reach hundreds or thousands of kilometers away from their origins. During the winter, ocean currents across the north of the Taiwan Strait from west to east may transport the pigs from the coast of Fujian and Zhejiang, China, to the coast of north-central Taiwan. Another possible driven force is the near-shore current of western China. In order to analyze the possible drifting path of pigs, the hydrodynamic model and the particle tracking model were applied. Pigs were simulated as mass particles. The simulation domain includes sea area nearby Kinmen and China where pigs may originate. Considering the effect of the currents and wind from 2018/12/26 to 2019/1/3, three possible drift scenarios were set for analysis, including (S1): originated from Weitou Bay; (S2): originated from Jiulong River estuary; (S3) originated from the coast of Quanzhou. The results showed that the most possible scenario is S3.</p>

2022 ◽  
Vol 10 (1) ◽  
pp. 98
Author(s):  
Kuan-Mei Hsiung ◽  
Yen-Ting Lin ◽  
Yu-San Han

Japanese eel larvae are passively transported to the East Asian Continental Shelf by the North Equatorial Current, Kuroshio and Kuroshio intrusion currents, and coastal currents. Previous studies have investigated the dispersal characteristics and pathways of Japanese glass eels. However, there are still limitations in these studies. According to long-term (2010–2020) catch data from the Fisheries Agency in Taiwan, the distribution and time series of glass eels recruitment to Taiwan are closely related to the surrounding ocean currents. Recruitment begins in eastern Taiwan via the mainstream Kuroshio and in southern Taiwan via the Taiwan Strait Warm Current. In central Taiwan, recruitment occurs from southern Taiwan, as well as from mainland China via the southern branch of the China Coast Current (CCC). The latest recruitment occurred in northern Taiwan and mainly comprised glass eels from mainland China via the northern branch of the CCC. A stronger monsoon during the La Niña phase could affect the recruitment time series in northern and eastern Taiwan. This study suggests that the recruitment directionality of glass eels is an indicator of the flow field of ocean/coastal currents and elucidates the dispersal characteristics of glass eels in the waters around Taiwan.


2014 ◽  
Vol 989-994 ◽  
pp. 1244-1247
Author(s):  
Ting Xu

Understanding the salinity transport mechanism in the estuaries is of great importance for coastal engineering, disaster prevention, water security and intertidal zone aquiculture.In this paper,the large-scale sea embankment in the Oujiang River Estuary (ORE) of Wenzhou shoal was taken as an example.Based on the intoduction of the study area,the 3D marine numerical model (EFDC) was setup and used for simulation of salinity changes induced by the embankment. The results indicated that the ORE is well-mixed estuary. The Ling-Ni Embankment designed in accordance with the flow direction makes the freshwater inflow reach far away, the salinity gradient increase, and the tongue contour reach further. The salinity difference of the north and south side of the embankment sea area is increased.


1988 ◽  
Vol 23 (1) ◽  
pp. 55-68 ◽  
Author(s):  
J. H. Carey ◽  
J. H. Hart

Abstract The identity and concentrations of chlorophenolic compounds in the Fraser River estuary were determined under conditions of high and low river flow at three sites: a site upstream from the trifurcation and at downstream sites for each main river arm. Major chlorophenolics present under both flow regimes were 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), pentachlorophenol (PCP), tetrachloroguaiacol (TeCG) and a compound tentatively identified as 3,4,5-trichloroguaiacol (3,4,5-TCG). Under high flow conditions, concentrations of the guaiacols were higher than any of the Chlorophenols and concentrations of all five chlorophenolics appeared to correlate. Under low flow conditions, concentrations of chloroguaiacols were higher than Chlorophenols at the upstream site and at the downstream site on the Main Arm, whereas at the downstream site on the North Arm, concentrations of 2,3,4,6-TeCP and PCP were higher than the chloroguaiacols in some samples. Overall, the results indicate that pulp mills upstream from the estuary are important sources of chlorophenolics to the estuary under all flow conditions. Additional episodic inputs of 2,3,4,6-TeCP and PCP from lumber mills occur along the North Arm. When these inputs occur, they can cause the concentrations of Chlorophenols in the North Arm to exceed provisional objectives. If chloroguaiacols are included as part of the objective, concentrations of total chlorophenolics in water entering the estuary can approach and exceed these objectives, especially under low flow conditions.


2021 ◽  
Vol 9 (8) ◽  
pp. 795
Author(s):  
Seongbong Seo ◽  
Young-Gyu Park

A coastal wave buoy was lost near Jeju Island, Korea, in late July 2014 and found at Cape Mendocino, USA, in April 2020. The buoy’s journey was simulated with a Lagrangian particle tracking model using surface ocean currents and wind data at 10 m above sea level. Experiments were conducted with windage values of 0, 2, and 4%. Particles were released along the southern coast of Jeju Island from 31 July to 8 August 2014. When the windage was 0 or 2%, most particles reached the northwest Pacific via the East/Japan Sea or East China Sea, respectively. With 4% windage, very few particles entered the North Pacific. Under 0% windage, particles accumulated in the Great Pacific Garbage Patch (GPGP) and never reached the USA. Under 2%, particles were able to escape the GPGP and started to reach the USA coast 2 years and 7 months after the release. The trajectory of the buoy was deduced from the trajectories of particles with a similar travel time. The buoy likely moved to East China and then to the subtropical convergence zone, where it must have circulated for approximately 2 years before being pushed toward Cape Mendocino by the intensified winter westerlies.


The development of the area, of the Thames Estuary is briefly traced since the late Cretaceous period, with its present outline being due to a combination of factors. The overall subsidence of the North Sea area, the ‘Alpine5 fold movements, and the transgression of the sea since the retreat of the Weichselian icesheets have all contributed. The positions of the shore-line during the critical phase, 9600 b.p. to 8000 b.p., of this last transgression of the sea are shown. Subsequent to this main transgressive phase, erosion of the shoreline has been rapid due to storm-waves and tidal current action. An estimation of the average rate of subsidence and/or sea-level rise is given based on the concept of sedimentary equilibrium in which a figure of 12.7 cm (5 in) per century is arrived at.


2012 ◽  
Vol 610-613 ◽  
pp. 1237-1241
Author(s):  
Jie Gu ◽  
Wei Chen ◽  
Xin Qin ◽  
Dan Qing Ma ◽  
Xiao Li Wang ◽  
...  

At present, the upper reach of the Deepwater Navigation Channel is silted heavily, which brings negative influences on navigation. A two-dimensional numerical model is set up to simulate the hydrodynamics of the Changjiang River Estuary with Delft3D-FLOW in this paper. This model has been validated with the observed tidal level, flow velocity magnitude and direction, and the computed results agree well with the observed data, which also shows the model can well simulate the hydrodynamics of the Changjiang River Estuary caused by the Deepwater Navigation Channel Project. Based on the analysis of computed results, especially the velocity along the South Passage and North Passage, the flood and ebb flow in the Hengsha Passage, and the flow spilt ratio of South Passage and North Passage, it presents that one fundamental reason for the sediment deposition in the upper reach of the Deepwater Navigation Channel is that the velocity along the North Passage is far less than that along South Passage, above all, the velocity in North Passage upstream of the Hengsha Passage is even smaller; another reason is that the flood and ebb flow of Hengsha Passage are large, which weakens the water exchange between the North Passage and South Channel.


2016 ◽  
Author(s):  
Jiliang Xuan ◽  
Daji Huang ◽  
Thomas Pohlmann ◽  
Jian Su ◽  
Bernhard Mayer ◽  
...  

Abstract. The seasonal mean and synoptic fluctuation of the wintertime Taiwan Warm Current (TWC) were investigated using a well validated finite volume community ocean model. The spatial distribution and dynamics of the synoptic fluctuation were highlighted. The seasonal mean of the wintertime TWC has two branches: an inshore branch between the 30 and 100 m isobaths and an offshore branch between the 100 and 200 m isobaths. The Coriolis term is much larger than the inertia term and is almost balanced by the pressure gradient term in both branches, indicating the geostrophic balance of the mean current. Two areas with significant fluctuations of the TWC were identified during wintertime. One of the areas is located to the north of Taiwan with velocities varying in the cross-shore direction. These significant cross-shore fluctuations are driven by barotropic pressure gradients associated with the intrusion of the Taiwan Strait Current (TSC). When a larger TSC intrudes north of Taiwan, the isobaric slope tilts downward from south to north, leading to a cross-shore current from the coastal area to the offshore area. When the TSC intrusion is weak, the cross-shore current to the north of Taiwan is directed from offshore to inshore. The other area of significant fluctuation is located in the inshore area, extending in the region between the 30 and 100 m isobaths. The fluctuations are generally strong in the alongshore direction, in particular at the latitudes 26.5° N and 28° N where they are important for the local cross-shore transports. Wind affects the synoptic fluctuation through episodic events. When the northeasterly monsoon prevails, the southward Zhe-Min Coastal Current dominates the inshore area associated with a deepening of the mixed layer. When the winter monsoon is weakened or the southerly wind prevails, the northward TWC dominates in the inshore area.


Sign in / Sign up

Export Citation Format

Share Document