The effect of seismic-like induced cyclic loading on damage response of sandstone and granite

Author(s):  
Rashid Geranmayeh Vaneghi ◽  
Arcady V. Dyskin ◽  
Klaus Thoeni ◽  
Mostafa Sharifzadeh ◽  
Mohammad Sarmadivaleh

<p>The detailed study of rock response to cyclic loading induced by natural phenomena, such as seismic and volcanic activities, and man-made explosions and excavation is necessary for failure prediction and hazard mitigation. The effect of the maximum stress level, loading amplitude, and frequency of stress cycles on the fatigue life and failure mechanisms of two microstructurally different rocks of granite/granodiorite and sandstone is investigated. Test data obtained from comprehensive experiments conducted on these rock types incorporated with the results of previous studies show that the fatigue life time of both rock types increases with a decrease in either maximum stress level or stress amplitude. Nevertheless, the fatigue strength threshold of hard rocks like granite is generally lower than that of soft rocks like sandstone. The study also shows that the low-frequency cyclic loading has more damaging effect on both rock types than the high frequency loading. This investigation demonstrates that the failure mechanism of rocks under cyclic loading is characterized by the development of more tensile microcracks compared to the monotonic loading and the opening and extension of the axial tensile microfractures are more evident at higher maximum stresses or loading amplitudes or at lower loading frequencies. The results presented in this study will contribute to a deeper understanding of the fatigue responses of sandstone and granite to seismic-generated loading–unloading processes under different conditions of stress cycles.</p>

1974 ◽  
Vol 14 (01) ◽  
pp. 19-24 ◽  
Author(s):  
S.S. Peng ◽  
E.R. Podnieks ◽  
P.J. Cain

Abstract Specimens of Salem limestone were loaded cyclically at a frequency of 2 cycles/sec in uniaxial cyclic compression, tension, and compression-tension. The number of cycles to failure, maximum deformation for each cycle, and load-deformation hysteresis loops were recorded. The fatigue life and fatigue limit values under cyclic compressive loading are comparable with those under cyclic tensile loading, whereas under cyclic compressive-tensile loading they are considerably lower. Introduction The study of rock behavior in cyclic loading has been relatively ignored in the past, even though certain problems in rock mechanics are closely related to cyclic loading. These problems include the effects of percussive drilling and the vibrations generated by blasting. An understanding of the mechanisms of fatigue failure in rock can be expected to help improve drilling efficiency and prevent vibration damage caused by blasting. Because of the lack of bask information on rock behavior under cyclic loading, the Federal Bureau of Mines, Twin Cities Mining Research Center began in 1968 an extensive program for studying cyclic loading effects. This program included the investigation of the behavior of rock loaded cyclically at different frequencies under varying test geometries, loading configurations, and environments. In the high-frequency range, sonic power transducers are being used to apply cyclic loading at a frequency of 10,000 Hz, and an electromagnetic shaker is being used at frequencies from 100 to 1,000 Hz. In the low-frequency range, cyclic loading of 2 to 10 Hz is applied by a closed-loop servocontrolled electrohydraulic testing machine. In each frequency range, experiments are conducted to provide the following information: fatigue limits, fatigue life, energy dissipation, temperature induced in the specimen, and the time history of load and deformation. This paper presents the first phase of be results obtained on specimens of Salem limestone loaded in the low-frequency range. The early findings on the high-frequency effects were reported separately. Recently, the effect of cyclic loading on rock behavior has been receiving more attention and considerable information is being generated. General Loading Concept in Cyclic Loading In conventional strength tests the monotonic loading program is specified by the loading rate and control mode. For cyclic loading, where the load is a periodic function of time, the problem is more complex. To evaluate such material properties as fatigue life, the load must be described systematically and concisely in terms of physically significant parameters. parameters. For a general case, one approach is to divide the cyclic stress into time-independent and time-dependent components. The time-independent component (or mean stress) is the time average of the stress. A cyclic stress with an amplitude A and zero mean can be superimposed on this loading. For the usual case of cyclic loading with steady loading conditions, the stress can be described as follows.(1)= + (t), where f(t) is a periodic function of time, t, and can be represented by a sine or sawtooth wave. Other ways of describing the stress are available such as using the maximum and minimum stresses, which are related to the mean and amplitude:(2)max = . and(3)min = . The key issue is to describe the loading in terms that will correlate with the material properties of interest. The use of amplitude and mean stress to describe cyclic loading separates the time-dependent bona the time-independent portion of the stress because the effect of each portion of the loading should be investigated separately. In analyzing the effect of cyclic loading on rock, another significant factor is the large difference between the tensile strength and the compressive strength. P. 19


2020 ◽  
Author(s):  
Liang Zhang ◽  
Su-juan Zhong

Abstract In this paper, the thermo-mechanical reliability of IMCs (Ni3Sn4, Cu3Sn, Cu6Sn5) solder joints and Sn-3.9Ag-0.6Cu solder joints were investigated systematically in 3D chip stacking structure subjected to an accelerated thermal cyclic loading based on finite element simulation and Taguchi method. Effects of different control factors, including high temperature, low temperature, dwell time of thermal cyclic loading, and different IMCs on the stress-strain response and fatigue life of solder joints were calculated respectively. The results indicate that maximum stress-strain can be found in the second solder joint on the diagonal of IMC solder joints array, for Sn-3.9Ag-0.6Cu solder joints array the corner solder joints shows the obvious maximum stress-strain, these areas are the crack propagated locations. The stress-strain and fatigue life of solder joints is more sensitive to dwell temperature, especially to high temperature, increasing the high temperature, dwell time, or decreasing the low temperature, can reduce the stress-strain and enlarge the fatigue life of solder joints. The optimal design in the 3D IC structure has the combination of the Cu6Sn5/Cu3Sn, 373K high temperature, 233K low temperature, and 10min dwell time.


2004 ◽  
Vol 127 (2) ◽  
pp. 213-219 ◽  
Author(s):  
John R. Cotton ◽  
Keith Winwood ◽  
Peter Zioupos ◽  
Mark Taylor

We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53–79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles (Cotton, J. R., Zioupos, P., Winwood, K., and Taylor, M., 2003, “Analysis of Creep Strain During Tensile Fatigue of Cortical Bone,” J. Biomech. 36, pp. 943–949). In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the “normalized stress” level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.


2010 ◽  
Vol 163-167 ◽  
pp. 3237-3241 ◽  
Author(s):  
Shi Bin Li ◽  
Wei Ping Zhang ◽  
Xiang Lin Gu ◽  
Ci Mian Zhu

To reasonablely assess the residual fatigue life of aged existing reinforced concrete(RC) bridges, axial tensile fatigue tests were conducted on fifteen naturally carbonation-induced corrosion steel bars. The fatigue test results indicate that the existence of corrosion pits reduces the fatigue life of steel bars significantly under the same fagitue stress; with the development of corrosion, the fatigue life of steel bars decays according to negative power exponent law approximately and the attenuation rate increases with stress level augment. The fatigue deterioration law of natural corrosion steel bars is similar to that of accelerated corrosion steel bars, but the attenuation rate is different from that of accelerated corrosion steel bars, and also the influence of stress level on the attenuation rate is just cross to that of accelerated corrosion steel bars. For the complexity of fatigue and corrosion, further pertinent conclusions remain to be confirmed.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Liang Zhang ◽  
Weimin Long ◽  
Sujuan Zhong

AbstractThe thermo-mechanical reliability of IMCs (Ni3Sn4, Cu3Sn, Cu6Sn5) solder joints and Sn-3.9Ag-0.6Cu solder joints was investigated systematically in 3D chip stacking structure subjected to an accelerated thermal cyclic loading based on finite element simulation and Taguchi method. Effects of different control factors, including high temperature, low temperature, dwell time of thermal cyclic loading, and different IMCs on the stress-strain response and fatigue life of solder joints were calculated respectively. The results indicate that maximum stress-strain can be found in the second solder joint on the diagonal of IMC solder joints array; for Sn-3.9Ag-0.6Cu solder joints array, the corner solder joints show the obvious maximum stress-strain, these areas are the crack propagated locations. The stress-strain and fatigue life of solder joints is more sensitive to dwell temperature, especially to high temperature; increasing the high temperature, dwell time, or decreasing the low temperature, can reduce the stress-strain and enlarge the fatigue life of solder joints. Finally, the optimal design in the 3D-IC structure has the combination of the Cu6Sn5/Cu3Sn, 373 K high temperature, 233 K low temperature, and 10 min dwell time. The fatigue lives of Sn-3.9Ag-0.6Cu under 218–398 K loading in the 3D assembly based on the creep strain are 347.4 cycles, which is in good agreement with experimental results (380 cycles).


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yintong Guo ◽  
Chunhe Yang ◽  
Lei Wang ◽  
Feng Xu

We investigated the mechanical properties of mature bedding shale under cyclic loading conditions, with an application to the design of hydraulic fracturing in shale gas wells. Laboratory experiments were conducted on shale samples under two principal loading orientations. Testing results showed that accumulated fatigue damage occurs in a three-stage process. Analysis of fatigue damage at different maximum stress levels shows that fatigue life increases as a power-law function with maximum stress decreasing. And the maximum stress significantly affects the fatigue life. Further, the elastic part of shale rock deformation was recovered in the unloading process, whereas the irreversible deformation remained. The irreversible deformation, growth trend, and accumulation of the total fatigue were directly related to the fatigue damage. This process can be divided into 3 stages: an initial damage stage, a constant velocity damage stage, and an accelerated damage stage, which accounted for about one-third of the fatigue damage. Shale rock is a nonhomogeneous material, and the bedding is well developed. Its fatigue life differs greatly in two principal loading orientations, even under the same loading conditions. All of these drawn conclusions are of great importance for design of hydraulic fracturing in shale gas wells.


2011 ◽  
Vol 90-93 ◽  
pp. 2659-2664
Author(s):  
Xiao Min Li ◽  
Hai Yan Guo ◽  
Peng Li

As one of the main configurations of the riser, top tensioned riser(TTR) encounters harsh environment in its whole service life. In order to ensure that the riser will fulfil its intended functions, a fatigue assessment should be carried out for each representative riser, which is subjected to dynamic fatigue loading. The fatigue life of TTR under the combination excitation of random waves, current and vessel motion is analyzed in this paper. The long-term stress histories of the riser are calculated and the mean stresses, the number of stress cycles and amplitudes are determined by rain flow counting method. The Palmgren-Miner rule for cumulative damage theory with a specified S–N curve is used to estimate the fatigue life of the riser. The corresponding numerical programs which can be used to calculate the response and fatigue life of the riser are compiled. The significant influences of internal flow velocities and low frequency motion of the vessel are analyzed in detail.


2021 ◽  
pp. 009524432110386
Author(s):  
Seyyed Mohammad Hosseini ◽  
Mohammad Hassan Shojaeefard ◽  
Hamed Saeidi Googarchin

Prediction of fatigue life is particularly crucial in magnetorheological elastomer (MRE) based rubber components, especially when are exposed to repetitive magnetic and cyclic loading. MREs are smart composites that contain soft elastomer matrix and carbonyl iron particles (CIPs). In this research, silicon rubber was mixed with 20% of CIPs in the absence of an external magnetic field to produce MREs. Firstly, for the determination of material constants (including hyper elastic, magnetic, and viscoelastic), two types of tests such as uniaxial compression and relaxation, were performed on the samples. Then, fatigue tests were performed by a servo-hydraulic fatigue testing machine with cyclic loading in a repetitive magnetic field. Fatigue equations were obtained based on the number of fatigue life and maximum stress. The results confirmed that maximum stress could be used as a trustworthy fatigue life predictor for MREs when they are subjected to a combination of repetitive magnetic and cyclic loading. Scanning electron microscopy images from fatigue crack showed that the internal structure of MREs became stronger in the direction of the magnetic field. The maximum stress of the MRE was smaller in the absence of a magnetic field and decreased as the number of fatigue cycles increased with and without the magnetic field.


2004 ◽  
Vol 126 (3) ◽  
pp. 330-339 ◽  
Author(s):  
P. Ganguly ◽  
T. L. A. Moore ◽  
L. J. Gibson

Cyclic loading of bone during daily activities can lead to fatigue degradation and increased risk of fracture in both the young and elderly population. Damage processes under cyclic loading in trabecular bone result in the reduction of the elastic modulus and accumulation of residual strain. These effects increase with increasing stress levels, leading to a progressive reduction in fatigue life. The present work analyzes the effect of stress and strain variation on the above damage processes in bovine trabecular bone, and develops a phenomenological model relating fatigue life to the imposed stress level. The elastic modulus reduction of the bone specimens was observed to depend on the maximum compressive strain, while the rate of residual strain accumulation was a function of the stress level. A model was developed for the upper and lower bounds of bone elastic modulus reduction with increasing number of cycles, at each stress range. The experimental observations were described well by the model. The model predicted the bounds of the fatigue life with change in fatigue stress. The decrease in the fatigue life with increasing stress was related to corresponding increases in the residual strain accumulation rates at the elevated stress levels. The model shows the validity of fatigue predictions from relatively few cyclic experiments, by combining trends observed in the monotonic and the cyclic tests. The model also presents a relatively simple procedure for predicting the endurance limit for bovine trabecular bone specimens.


Sign in / Sign up

Export Citation Format

Share Document