From Google Maps to Air Quality: a big data approach to modelling real-time NO2 concentrations in an urban street canyon from road traffic data

Author(s):  
Helen Pearce ◽  
Zhaoya Gong ◽  
Xiaoming Cai ◽  
William Bloss

<p>In most European cities, the key air pollutants driving adverse health outcomes are nitrogen dioxide (NO2) and fine particulate matter (PM2.5), with 64% of new paediatric asthma cases in urban centres attributed to elevated NO2 levels (Achakulwisut et al., 2019). In the complex landscape of a city, a synthesis of techniques to quantify air pollution is required to account for variations in traffic, meteorology, and urban geometry.</p><p>Here, we present the results from a comparison study between measured air pollutant data collected at Marylebone Road, London and the output from a three-stage modelling chain. This site was chosen due to the availability of road-side air quality data collected within a street canyon (aspect ratio approximately equal to 1) and daily traffic flow in excess of 70,000 motor vehicles. The modelling chain consists of: 1) real-time traffic information of vehicle journey times, 2) speed-related emission calculations, and 3) air quality box-model to simulate the interaction of pollutants within the environment.</p><p>While the transport sector accounts for much of the outdoor air pollution in UK cities, a limiting factor of current techniques is that traffic is approximated at coarse temporal and spatial resolutions. In this study, we present a novel technique that helps to ‘fill in’ the gaps in our traffic data by harnessing the power of real-time queries to Google Maps to obtain travel times between fixed locations, enabling the derivation of average vehicle speeds. This dataset can then be used to determine more accurate emission factors for NOx. Total emissions are then calculated with the aid of traffic flow data and vehicle fleet characteristics. The air quality box model simulates photochemical reactions that form NO2, the exchange of pollutants with the background air aloft, and advection of pollutants along the street.</p><p>Hourly travel times and total vehicle flow data were collected between July and October 2019, totalling 905 observations and calculated emissions values. Meteorological data from Heathrow airport and background air quality from the Kensington AURN site were used as supporting inputs to the air quality box model. Each observation was treated as a starting point of the box model, and the simulation was run for 1 hour, with mixing due to advection occurring every 60 seconds. Results are promising; when using the full model chain modelled and measured NO2 concentrations are significantly correlated (r = 0.467, p < 0.000). In comparison, when a constant speed of 30 mph is used to calculate total emissions, therefore excluding the impact of congestion, the strength of the correlation decreases (r = 0.362, p < 0.000) and the model underestimates pollutant concentrations.</p><p>The applications of this model chain are vast. For any street that is covered by a suitable mapping platform and has available data on vehicle numbers, it would be possible to provide a real-time estimation of pollutant concentrations at a high temporal resolution. This could be utilised in several ways, such as: assessing policy implementation, and providing a high resolution input for air quality modelling and health exposure studies.</p>

Author(s):  
L. Marek ◽  
M. Campbell ◽  
M. Epton ◽  
M. Storer ◽  
S. Kingham

The opportunity of an emerging smart city in post-disaster Christchurch has been explored as a way to improve the quality of life of people suffering Chronic Obstructive Pulmonary Disease (COPD), which is a progressive disease that affects respiratory function. It affects 1 in 15 New Zealanders and is the 4th largest cause of death, with significant costs to the health system. While, cigarette smoking is the leading cause of COPD, long-term exposure to other lung irritants, such as air pollution, chemical fumes, or dust can also cause and exacerbate it. Currently, we do know little what happens to the patients with COPD after they leave a doctor’s care. By learning more about patients’ movements in space and time, we can better understand the impacts of both the environment and personal mobility on the disease. This research is studying patients with COPD by using GPS-enabled smartphones, combined with the data about their spatiotemporal movements and information about their actual usage of medication in near real-time. We measure environmental data in the city, including air pollution, humidity and temperature and how this may subsequently be associated with COPD symptoms. In addition to the existing air quality monitoring network, to improve the spatial scale of our analysis, we deployed a series of low-cost Internet of Things (IoT) air quality sensors as well. The study demonstrates how health devices, smartphones and IoT sensors are becoming a part of a new health data ecosystem and how their usage could provide information about high-risk health hotspots, which, in the longer term, could lead to improvement in the quality of life for patients with COPD.


The surveys regarding air pollution shows that there has been a hasty growth due to the emission of fuels and exhaust gases from factories. The Air Quality Index (AQI) has been launched to note the contemporary status of the air quality. The intent of AQI is to aid every individual know how the regional air quality will make an impact on them. The Environmental Protection Agency assess the AQI for five major air pollutants namely Nitrogen dioxide (NO2), ground-level ozone (O3), particle pollution (PM10, PM2.5), carbon monoxide (CO), and sulphur dioxide (SO2). The intent of the project is to congregate real-time Air Quality Index from distinct monitoring stations across India, analysing the data and reporting on it. Collect the real-time data using the API key provided by Open Government Data (OGD) platform India. This is done by making use of Microsoft Business Intelligence (MSBI) and Power BI Tools to transform, analyse and visualize the data. This project can be utilized to develop various programs like Ozone today in Europe and in mobile applications which acts as an alert system that can protect people from air pollution.


2019 ◽  
Vol 41 (1) ◽  
pp. 37-52
Author(s):  
Tongxin Sun ◽  
Bu Zhong

A computer-aided semantic analysis (using Linguistic Inquiry and Word Count [LIWC]) examined how newspaper coverage of air pollution from 2014 to 2017 may affect the public agenda in four cities—Hong Kong, London, Pittsburgh, and Tianjin. Results show that after controlling for the real-time air quality, the agenda-setting effect was found in Hong Kong, London, and Pittsburgh, but not Tianjin. Tianjin’s reports also contained more future-framed words but fewer present-framed words than other cities.


Author(s):  
Abhijeet Singh

Abstract: Open burning of municipal solid waste (MSW) is a poorly-characterized and frequently-underestimated source of air pollution in developing countries. This paper estimates the air pollution happening from MSW burning in municipality areas of the Prayagraj, Uttar Pradesh, India. Air quality models (AQMs) are critical components for urban air quality management because they can predict and forecast air pollutant concentrations. Advanced AQM, such as AERMOD, has a well-established application in the developed world provided sufficient input data is available. However, in poor countries, it is limited due to a lack of adequate and trustworthy data. The present study is focused to assess the urban air quality due to municipal solid waste burning around a Sangam city Prayagraj in India using dispersion modelling. Keywords: PM10, PM2.5, Air Quality Modelling, AERMOD


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 253
Author(s):  
Haitao Zhou ◽  
Yueming Yu ◽  
Xuan Gu ◽  
Yun Wu ◽  
Mei Wang ◽  
...  

Air pollution shows a generally decreasing trend from the north to the south in China since 2013 (GB3095-2012, the current standard for monitoring). However, an opposite observation was recorded in 2017, especially in winter. In this study, we collected monitoring data of six air pollutants in 2016 and 2017, from a northern city (Beijing) and a southern city (Nanjing) for comparison. As air pollution was highly dependent upon meteorological conditions, we further analyzed their relationships to explain this abnormal phenomenon. Seasonal averaged PM2.5, PM10, SO2, CO, and NO2 were negatively correlated with wind scale (WS) while 8-h O3 exhibited an opposite relationship. Relative humidity (RH) has opposite effects on the concentrations of different pollutants in Beijing and Nanjing. The 8-h O3 showed the closest positive correlation with temperature (T), which is due to its formation mechanism. In Beijing, decreased RH, together with more wind from northwest in winter, resulted in an improved air quality in 2017. In Nanjing, WS, RH, T, and wind direction fluctuated within a narrow range in each season, leading to relatively stable pollutant concentrations. These results suggest that meteorological conditions are important factors to evaluate the air quality and implement control measures.


Author(s):  
Gayatri Doctor ◽  
Payal Patel

Air pollution is a major environmental health problem affecting everyone. An air quality index (AQI) helps disseminate air quality information (almost in real time) about pollutants like PM10, PM2.5, NO2, SO2, CO, O3, etc. In the 2018 environmental performance index (EPI), India ranks 177 out of 180 countries, which indicates a need for awareness about air pollution and air quality monitoring. Out of the 100 smart cities in the Indian Smart City Mission, which is an urban renewal program, many cities have considered the inclusion of smart environment sensors or smart poles with environment sensors as part of their proposals. Internet of things (IoT) environmental monitoring applications can monitor (in near real time) the quality of the air in crowded areas, parks, or any location in the city, and its data can be made publicly available to citizens. The chapter describes some IoT environmental monitoring applications being implemented in some of the smart cities like Surat, Kakinada.


2021 ◽  
Author(s):  
Allen Blackman ◽  
Bridget Hoffmann

Ambient air pollution is a leading cause of death in developing countries. In theory, using smartphone apps, text messages, and other personal information and communication technologies to disseminate real-time information about such pollution can boost avoidance behavior like wearing face masks and closing windows. Yet evidence on their effectiveness is limited. We conduct a randomized controlled trial to evaluate the impact of training university students in Bogotá, Colombia to use a newly available municipal government smartphone app that displays real-time information on air quality. The training increased participants acquisition of information about air quality, their knowledge about avoidance behavior, and their actual avoidance behavior. It also enhanced their concern about other environmental issues. These effects were moderated by participants characteristics. For example, the training was generally less effective among job holders.


Sign in / Sign up

Export Citation Format

Share Document