Breathe Easy, There's an App for That: Using Information and Communication Technology to Avoid Air Pollution in Bogotá

2021 ◽  
Author(s):  
Allen Blackman ◽  
Bridget Hoffmann

Ambient air pollution is a leading cause of death in developing countries. In theory, using smartphone apps, text messages, and other personal information and communication technologies to disseminate real-time information about such pollution can boost avoidance behavior like wearing face masks and closing windows. Yet evidence on their effectiveness is limited. We conduct a randomized controlled trial to evaluate the impact of training university students in Bogotá, Colombia to use a newly available municipal government smartphone app that displays real-time information on air quality. The training increased participants acquisition of information about air quality, their knowledge about avoidance behavior, and their actual avoidance behavior. It also enhanced their concern about other environmental issues. These effects were moderated by participants characteristics. For example, the training was generally less effective among job holders.

Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 114
Author(s):  
Jiří Bílek ◽  
Ondřej Bílek ◽  
Petr Maršolek ◽  
Pavel Buček

Sensor technology is attractive to the public due to its availability and ease of use. However, its usage raises numerous questions. The general trustworthiness of sensor data is widely discussed, especially with regard to accuracy, precision, and long-term signal stability. The VSB-Technical University of Ostrava has operated an air quality sensor network for more than two years, and its large sets of valid results can help in understanding the limitations of sensory measurement. Monitoring is focused on the concentrations of dust particles, NO2, and ozone to verify the impact of newly planted greenery on the reduction in air pollution. The sensor network currently covers an open field on the outskirts of Ostrava, between Liberty Ironworks and the nearby ISKO1650 monitoring station, where some of the worst air pollution levels in the Czech Republic are regularly measured. In the future, trees should be allowed to grow over the sensors, enabling assessment of the green barrier effect on air pollution. As expected, the service life of the sensors varies from 1 to 3 years; therefore, checks are necessary both prior to the measurement and regularly during operation, verifying output stability and overall performance. Results of the PMx sensory measurements correlated well with the reference method. Concentration values measured by NO2 sensors correlated poorly with the reference method, although timeline plots of concentration changes were in accordance. We suggest that a comparison of timelines should be used for air quality evaluations, rather than particular values. The results showed that the sensor measurements are not yet suitable to replace the reference methods, and dense sensor networks proved useful and robust tools for indicative air quality measurements (AQM).


Managing real-time information is an important task for any organization regardless of the size. This is because real-time information is used as the basis for an organization to make decisions that will affect the business if the information obtained is inaccurate, slow and outdated. For SMEs, this is a great challenge as it faces capital constraints and outdated technological applications. Thus, the purpose of this study to examine the challenges faced by SMEs in managing the real-time information to their inventory management and the impact on the overall business performance. A qualitative method was adopted where the in-depth interview was using to extract the information. Based on the saturation principle, the respondent was selected specifically from the SMEs in food manufacturer based in Malacca Halal Hub area. The finding of this study has supported the previous study on the challenges and issue of real-time information facing by the SMEs. A notable finding in this research is that SMEs is employing a skilled worker to manage the absence of an information system to manage real-time information and still capable to generate a profit from the business. This study extended the previous finding and offer an opportunity for further exploration in this area.


2011 ◽  
Vol 20 (1) ◽  
Author(s):  
C.Y Wright ◽  
R Oosthuizen ◽  
J John ◽  
R.M Garland ◽  
P Albers ◽  
...  

Human exposure to poor air quality is linked to adverse health effects. The largest burden of air pollution-related diseases is in developing countries where air pollution levels are also among the highest in the world. In South Africa, two geographic areas, the Vaal Triangle and the Highveld, have been identified for air quality managementinterventions to ensure compliance with National Air Quality Management Standards and to control potential harmful air pollution impacts on human health. The Highveld Priority Area (HPA) is characterised by intense mining, coal-fired power plants, industries, including iron and steel manufacturing, chemical plants, agricultural activity, motor vehicles and domestic fuel burning. Apart from two previous studies, no respiratory health studies have been carried out in the HPA. This paper describes the results of a recent, comprehensive study of ambient air quality, potential exposure to air pollution and air-related human health among a low income community living in the HPA in order to better understand the impact of air pollution on human health in South Africa.


2020 ◽  
Author(s):  
Rebecca Tanzer-Gruener ◽  
Jiayu Li ◽  
s. rose eilenberg ◽  
Allen Robinson ◽  
Albert Presto

Modifiable sources of air pollution such as traffic, cooking, and electricity generation emissions can be modulated either by changing activity levels or source intensity. Although air pollution regulations typically target reducing emission factors rather than altering activity, the COVID-19 related closures offered a novel opportunity to observe and quantify the impact of activity levels of modifiable factors on ambient air pollution in real-time. We use data from a network of twenty-seven low-cost Real-time Affordable Multi-Pollutant (RAMP) sensor packages deployed throughout urban and suburban Pittsburgh along with data from EPA regulatory monitors. The RAMP locations were divided into four site groups based on land use (High Traffic, Urban Residential, Suburban Residential, and Industrial). Concentrations of PM2.5, CO, and NO2 following the COVID-related closures at each site group were compared to measurements from “business as usual” periods in March 2019 and 2020. Overall, PM2.5 concentrations decreased across the domain by 3 μg/m3. Intra-day variabilities of the pollutants were computed to attribute pollutant enhancements to specific emission sources (i.e. traffic and industrial emissions). There was no significant change in the industrial related intra-day variability of PM2.5 at the Industrial sites following the COVID-related closures. The morning rush hour induced CO and NO2 concentrations at the High Traffic sites were reduced by 57% and 43%, respectively, which is consistent with the observed reduction in commuter traffic (~50%). The morning rush hour PM2.5 enhancement from traffic emissions fell from ~1.5 μg/m3 to ~0 μg/m3 across all site groups. This translates to a reduction of 0.125 μg/m3 in the daily average PM2.5 concentration. If PM2.5 National Ambient Air Quality Standards (NAAQS) are tightened these calculations shed light on to what extent reductions in traffic related emissions are able to aid in meeting more stringent regulations.


2020 ◽  
Author(s):  
Rebecca Tanzer-Gruener ◽  
Jiayu Li ◽  
s. rose eilenberg ◽  
Allen Robinson ◽  
Albert Presto

Modifiable sources of air pollution such as traffic, cooking, and electricity generation emissions can be modulated either by changing activity levels or source intensity. Although air pollution regulations typically target reducing emission factors rather than altering activity, the COVID-19 related closures offered a novel opportunity to observe and quantify the impact of activity levels of modifiable factors on ambient air pollution in real-time. We use data from a network of twenty-seven low-cost Real-time Affordable Multi-Pollutant (RAMP) sensor packages deployed throughout urban and suburban Pittsburgh along with data from EPA regulatory monitors. The RAMP locations were divided into four site groups based on land use (High Traffic, Urban Residential, Suburban Residential, and Industrial). Concentrations of PM2.5, CO, and NO2 following the COVID-related closures at each site group were compared to measurements from “business as usual” periods in March 2019 and 2020. Overall, PM2.5 concentrations decreased across the domain by 3 μg/m3. Intra-day variabilities of the pollutants were computed to attribute pollutant enhancements to specific emission sources (i.e. traffic and industrial emissions). There was no significant change in the industrial related intra-day variability of PM2.5 at the Industrial sites following the COVID-related closures. The morning rush hour induced CO and NO2 concentrations at the High Traffic sites were reduced by 57% and 43%, respectively, which is consistent with the observed reduction in commuter traffic (~50%). The morning rush hour PM2.5 enhancement from traffic emissions fell from ~1.5 μg/m3 to ~0 μg/m3 across all site groups. This translates to a reduction of 0.125 μg/m3 in the daily average PM2.5 concentration. If PM2.5 National Ambient Air Quality Standards (NAAQS) are tightened these calculations shed light on to what extent reductions in traffic related emissions are able to aid in meeting more stringent regulations.


2021 ◽  
Vol 13 (19) ◽  
pp. 10972
Author(s):  
Wei Zhang ◽  
Ziqiang Liu ◽  
Yujie Zhang ◽  
Elly Yaluk ◽  
Li Li

Air pollution has a significant impact on tourism; however, research in this area is still limited. In this study, we applied grey relational analysis to panel data from 31 provinces in China and evaluated the relationship between air quality and inbound tourist arrivals. The study focused on provincial-level disparities for the different key air quality evaluation standards during 2009–2012 and 2013–2019. For instance, we considered PM10, SO2, NO2 and the excellent and good ratings of Air Pollution Index (API) during 2009–2012 and the additional PM2.5, CO, O3 and the excellent and good ratings of Air Quality Index (AQI) from 2013 to 2019. Results indicate that: (1) Inbound tourist arrivals are significantly and positively affected by ambient air quality, and the impact from 2013 to 2019 was greater than that from 2009 to 2012; (2) there is regional diversity in inbound tourist arrivals, and the impact of the different air quality indicators varies; (3) inbound tourists showed greater sensitivity to air pollution under the AQI standard; (4) the impact of air quality indicators on the inbound tourist arrivals shows grey relational order, and the concentration of PM2.5, PM10 and SO2 have less impact than NO2, CO and O3 on changes in tourism numbers; (5) consistency in the air quality impact on foreign tourists and compatriot tourists from HK, MO and TW varies by air quality indicators. This study highlights the need for appropriate measures to improve air quality for high-quality and sustainable development of inbound tourism.


2021 ◽  
Vol 11 (14) ◽  
pp. 6469
Author(s):  
Fu-Shiung Hsieh

Advancement of IoT and ICT provide infrastructure to manage, monitor and control Cyber-Physical Systems (CPS) through timely provision of real-time information from the shop floor. Although real-time information in CPS such as resource failures can be detected based on IoT and ICT, improper response to resource failures may cripple CPS and degrade performance. Effective operations of CPS relies on an effective scheme to evaluate the impact of resource failures, support decision making needed and take proper actions to respond to resource failures. This motivates us to develop a methodology to assess the impact of resource failures on operations of CPS and provide the decision support as needed. The goal of this study is to propose solution algorithms to analyze robustness of CPS with respect to resource failures in terms of the impact on temporal properties. Given CPS modeled by a class of discrete timed Petri nets (DTPNs), we develop theory to analyze robustness of CPS by transforming the models to residual spatial-temporal network (RSTN) models in which capacity loss due to resources is reflected. We formulate an optimization problem to determine the influence of resource failures on CPS based on RSTNs and analyze the feasibility to meet the order deadline. To study the feasibility to solve a real problem, we analyze the computational complexity of the proposed algorithms. We illustrate the proposed method by application scenarios. We conduct experiments to study efficiency and verify computational feasibility of the proposed method to solve a real problem.


Sign in / Sign up

Export Citation Format

Share Document