Surface-Sensitive Methods for Marine Nanolayer Time-Series Studies

Author(s):  
Florian-David Lange ◽  
Nhat-Thao Ton-Nu ◽  
Gernot Friedrichs

<p>The interface between air and sea, the sea surface microlayer, covers a large part of the earth's surface and is enriched by amphiphilic organic molecules. It is a zone of very active chemistry and biology. The uppermost molecular layer directly at the air-sea interface, the so-called nanolayer, has a significant impact on wave dynamics by changing the viscoelastic properties of the interface and hence modulates air-sea gas exchange.</p><p>To answer the question if nanolayer abundance can be directly correlated to primary productivity, a close collaboration between biology and physical chemistry in the spirit of fundamental surface sciences is necessary. This contribution reports a showcase example how to apply a physico-chemical laser spectroscopic tool as a valuable contribution to such an interdisciplinary field. The described non-standard experiments yield fresh insight into a complex environmental system and shed light on non-obvious relations between variable biological activity and the physical properties of the air-sea interface. In the end, this is of particular interest for the assessment of the global role of the North Atlantic to act as a sink for anthropogenic CO2 emissions. Here, strong algae blooms take place, but if they go along with an immediate or delayed nanolayer formation is largely unknown. </p><p>From an analytical point of view, the investigation of the very thin organic layer at the air-water interface is challenging and has to rely on surface-sensitive techniques with the ability to distinguish between nanolayer and bulk water signal contributions. In this study, two complementary methods have been applied to measure both enrichment and abundance of natural sea surface films. Both laser spectroscopic Vibrational Sum Frequency Generation spectra (VSFG) and Langmuir compression isotherms yield information about the presence of surface-active compounds. Whereas the latter essentially measures surface tension changes, VSFG as a vibrational type of spectroscopy supplies additional information about the chemical nature of the interfacial molecules. Based on laboratory studies of organic nanolayer proxies, it was also possible to define a numerical index related to the surface coverage, hence simplifying the use of such measurements for other disciplines. </p><p>More precisely, natural samples were taken at the Boknis Eck time series station (BETS) in the Baltic Sea over ten years, complemented by a comprehensive data set obtained during two consecutive research cruises in the framework of the Baltic Gas Exchange (Baltic GasEx) experiment. Enrichment of surface-active organic material in the microlayer could be confirmed by both methods, indicating the expected tight connection between micro- and nanolayer signal. In agreement with earlier preliminary data (Biogeosciences 10 (2013) 5325), a seasonal trend of nanolayer abundance has been identified that does not directly correlate with chlorophyll concentration and the approximate time of the spring algae bloom at Boknis Eck. This interesting finding implies that primary productivity is not necessarily linked with nanolayer formation and that photochemical and microbial processing of organic precursor compounds play a role for the observed seasonality. More measurements along those lines are needed, in particular for the open Atlantic Ocean, to validate these findings. </p><p> </p><p> </p><p> </p>

Author(s):  
Diaz Juan Navia ◽  
Diaz Juan Navia ◽  
Bolaños Nancy Villegas ◽  
Bolaños Nancy Villegas ◽  
Igor Malikov ◽  
...  

Sea Surface Temperature Anomalies (SSTA), in four coastal hydrographic stations of Colombian Pacific Ocean, were analyzed. The selected hydrographic stations were: Tumaco (1°48'N-78°45'W), Gorgona island (2°58'N-78°11'W), Solano Bay (6°13'N-77°24'W) and Malpelo island (4°0'N-81°36'W). SSTA time series for 1960-2015 were calculated from monthly Sea Surface Temperature obtained from International Comprehensive Ocean Atmosphere Data Set (ICOADS). SSTA time series, Oceanic Nino Index (ONI), Pacific Decadal Oscillation index (PDO), Arctic Oscillation index (AO) and sunspots number (associated to solar activity), were compared. It was found that the SSTA absolute minimum has occurred in Tumaco (-3.93°C) in March 2009, in Gorgona (-3.71°C) in October 2007, in Solano Bay (-4.23°C) in April 2014 and Malpelo (-4.21°C) in December 2005. The SSTA absolute maximum was observed in Tumaco (3.45°C) in January 2002, in Gorgona (5.01°C) in July 1978, in Solano Bay (5.27°C) in March 1998 and Malpelo (3.64°C) in July 2015. A high correlation between SST and ONI in large part of study period, followed by a good correlation with PDO, was identified. The AO and SSTA have showed an inverse relationship in some periods. Solar Cycle has showed to be a modulator of behavior of SSTA in the selected stations. It was determined that extreme values of SST are related to the analyzed large scale oscillations.


2017 ◽  
Author(s):  
David Morris ◽  
John Pinnegar ◽  
David Maxwell ◽  
Stephen Dye ◽  
Liam Fernand ◽  
...  

Abstract. The datasets described here bring together quality-controlled seawater temperature measurements, from over 130 years of Departmental government-funded marine science investigations in the UK (United Kingdom). Since before the foundation of a Marine Biological Association fisheries laboratory in 1902 and through subsequent evolutions as the Directorate of Fisheries Research and the current Centre for Environment Fisheries & Aquaculture Science, UK Government marine scientists and observers have been collecting seawater temperature data as part of oceanographic, chemical, biological, radiological, and other policy driven research and observation programmes in UK waters. These datasets start with a few tens of records per year, rise to hundreds from the early 1900s, thousands by 1959, hundreds of thousands by the 1980s, peaking with > 1 million for some years from 2000 onwards. The data source systems vary from time series at coastal monitoring stations or offshore platforms (buoys), through repeated research cruises or opportunistic sampling from ferry routes, to temperature extracts from CTD (Conductivity Temperature Depth) profiles, oceanographic, fishery and plankton tows, and data collected from recreational scuba divers or electronic devices attached to marine animals. The datasets described have not been included in previous seawater temperature collation exercises (e.g. International Comprehensive Ocean-Atmosphere Data Set, Met Office Hadley Centre Sea Surface Temperature data set, Centennial in situ Observation-Based Estimate Sea Surface Temperature data), although some summary data reside in the British Oceanographic Data Centre (BODC) archive, the Marine Environment Monitoring and Assessment National (MERMAN) database and the International Council for the Exploration of the Seas (ICES) Data Centre. We envisage the data primarily providing a biologically and ecosystem-relevant context for regional assessments of changing hydrological conditions around the British Isles, although cross matching with satellite derived data for surface temperatures at specific times and in specific areas is another area where the data could be of value (see e.g. Smit et al., 2013). Maps are provided indicating geographical coverage which is generally within and around UK Continental Shelf area, but occasionally extending north from Labrador and Greenland, to east of Svalbard, and southward to the Bay of Biscay. Example potential uses of the data are described using plots of data in four selected groups of 4 ICES Rectangles covering areas of particular fisheries interest. The full dataset enables extensive data synthesis, for example in the southern North Sea, where issues of spatial and numerical bias from a data source are explored. The full dataset also facilitates the construction of long-term temperature time series and an examination of changes in the phenology (seasonal timing) of ecosystem processes. This is done for a wide geographic area with an exploration of the limitations of data coverage over long periods. Throughout, we highlight and explore potential issues around the simple combination of data from the diverse and disparate sources collated here. The datasets are available on the Cefas Data Hub (https://www.cefas.co.uk/cefas-data-hub/).


Author(s):  
Diaz Juan Navia ◽  
Diaz Juan Navia ◽  
Bolaños Nancy Villegas ◽  
Bolaños Nancy Villegas ◽  
Igor Malikov ◽  
...  

Sea Surface Temperature Anomalies (SSTA), in four coastal hydrographic stations of Colombian Pacific Ocean, were analyzed. The selected hydrographic stations were: Tumaco (1°48'N-78°45'W), Gorgona island (2°58'N-78°11'W), Solano Bay (6°13'N-77°24'W) and Malpelo island (4°0'N-81°36'W). SSTA time series for 1960-2015 were calculated from monthly Sea Surface Temperature obtained from International Comprehensive Ocean Atmosphere Data Set (ICOADS). SSTA time series, Oceanic Nino Index (ONI), Pacific Decadal Oscillation index (PDO), Arctic Oscillation index (AO) and sunspots number (associated to solar activity), were compared. It was found that the SSTA absolute minimum has occurred in Tumaco (-3.93°C) in March 2009, in Gorgona (-3.71°C) in October 2007, in Solano Bay (-4.23°C) in April 2014 and Malpelo (-4.21°C) in December 2005. The SSTA absolute maximum was observed in Tumaco (3.45°C) in January 2002, in Gorgona (5.01°C) in July 1978, in Solano Bay (5.27°C) in March 1998 and Malpelo (3.64°C) in July 2015. A high correlation between SST and ONI in large part of study period, followed by a good correlation with PDO, was identified. The AO and SSTA have showed an inverse relationship in some periods. Solar Cycle has showed to be a modulator of behavior of SSTA in the selected stations. It was determined that extreme values of SST are related to the analyzed large scale oscillations.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1285
Author(s):  
Francisco Leitão ◽  
Vânia Baptista ◽  
Vasco Vieira ◽  
Patrícia Laginha Silva ◽  
Paulo Relvas ◽  
...  

Coastal upwelling has a significant local impact on marine coastal environment and on marine biology, namely fisheries. This study aims to evaluate climate and environmental changes in upwelling trends between 1950 and 2010. Annual, seasonal and monthly upwelling trends were studied in three different oceanographic areas of the Portuguese coast (northwestern—NW, southwestern—SW, and south—S). Two sea surface temperature datasets, remote sensing (RS: 1985–2009) and International Comprehensive Ocean—Atmosphere Data Set (ICOADS: 1950–2010), were used to estimate an upwelling index (UPWI) based on the difference between offshore and coastal sea surface temperature. Time series analyses reveal similar yearly and monthly trends between datasets A decrease of the UPWI was observed, extending longer than 20 years in the NW (1956–1979) and SW (1956–1994), and 30 years in the S (1956–1994). Analyses of sudden shifts reveal long term weakening and intensification periods of up to 30 years. This means that in the past 60 years a normal climate UPWI occurred along the Portuguese coast. An intensification of UPWI was recorded in recent decades regardless of the areas (RS: 1985–2009). Such an intensification rate (linear increase in UPWI) is only significant in S in recent decades (increase rate: ICOADS = 0.02 °C decade-1; RS = 0.11 °C decade-1) while in NW and SW the increase rate is meaningless. In NW more stable UPWI conditions were recorded, however average UPWI values increased in autumn and winter in NW in recently decades (RS: 1985–2009). An intensification rate of UPWI was recorded during summer (July, August and September) in SW and S in latter decades (RS: 1985–2009). The average UPWI values increased in recent decades in autumn in S. Marked phenological changes were observed in S in summer (before downwelling conditions prevail whilst recently when UPWI regimes prevail) with UPWI seasonal regime in S in recent decades becoming similar to those found in SW and NW. Results of this work can contribute to a better understanding of how upwelling dynamics affect/are correlated with biological data.


2018 ◽  
Vol 10 (1) ◽  
pp. 27-51 ◽  
Author(s):  
David J. Morris ◽  
John K. Pinnegar ◽  
David L. Maxwell ◽  
Stephen R. Dye ◽  
Liam J. Fernand ◽  
...  

Abstract. The datasets described here bring together quality-controlled seawater temperature measurements from over 130 years of departmental government-funded marine science investigations in the UK (United Kingdom). Since before the foundation of a Marine Biological Association fisheries laboratory in 1902 and through subsequent evolutions as the Directorate of Fisheries Research and the current Centre for Environment Fisheries & Aquaculture Science, UK government marine scientists and observers have been collecting seawater temperature data as part of oceanographic, chemical, biological, radiological, and other policy-driven research and observation programmes in UK waters. These datasets start with a few tens of records per year, rise to hundreds from the early 1900s, thousands by 1959, and hundreds of thousands by the 1980s, peaking with  >  1 million for some years from 2000 onwards. The data source systems vary from time series at coastal monitoring stations or offshore platforms (buoys), through repeated research cruises or opportunistic sampling from ferry routes, to temperature extracts from CTD (conductivity, temperature, depth) profiles, oceanographic, fishery and plankton tows, and data collected from recreational scuba divers or electronic devices attached to marine animals. The datasets described have not been included in previous seawater temperature collation exercises (e.g. International Comprehensive Ocean–Atmosphere Data Set, Met Office Hadley Centre sea surface temperature data set, the centennial in situ observation-based estimates of sea surface temperatures), although some summary data reside in the British Oceanographic Data Centre (BODC) archive, the Marine Environment Monitoring and Assessment National (MERMAN) database and the International Council for the Exploration of the Sea (ICES) data centre. We envisage the data primarily providing a biologically and ecosystem-relevant context for regional assessments of changing hydrological conditions around the British Isles, although cross-matching with satellite-derived data for surface temperatures at specific times and in specific areas is another area in which the data could be of value (see e.g. Smit et al., 2013). Maps are provided indicating geographical coverage, which is generally within and around the UK Continental Shelf area, but occasionally extends north from Labrador and Greenland to east of Svalbard and southward to the Bay of Biscay. Example potential uses of the data are described using plots of data in four selected groups of four ICES rectangles covering areas of particular fisheries interest. The full dataset enables extensive data synthesis, for example in the southern North Sea where issues of spatial and numerical bias from a data source are explored. The full dataset also facilitates the construction of long-term temperature time series and an examination of changes in the phenology (seasonal timing) of ecosystem processes. This is done for a wide geographic area with an exploration of the limitations of data coverage over long periods. Throughout, we highlight and explore potential issues around the simple combination of data from the diverse and disparate sources collated here. The datasets are available on the Cefas Data Hub (https://www.cefas.co.uk/cefas-data-hub/). The referenced data sources are listed in Sect. 5.


2014 ◽  
Vol 11 (8) ◽  
pp. 12255-12294 ◽  
Author(s):  
G. Parard ◽  
A. A. Charantonis ◽  
A. Rutgerson

Abstract. Studies of coastal seas in Europe have brought forth the high variability in the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes makes their accurate estimation an arduous task. This is more pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been as highly detailed as in the open oceans. In adition, the joint availability of in-situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, a combination of two existing methods (Self-Organizing-Maps and Multiple Linear regression) is used to estimate ocean surface pCO2 in the Baltic Sea from remotely sensed surface temperature, chlorophyll, coloured dissolved organic matter, net primary production and mixed layer depth. The outputs of this research have an horizontal resolution of 4 km, and cover the period from 1998 to 2011. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in-situ measurements, and a root mean square error is of 38 μatm. The removal of any of the satellite parameters degraded this reconstruction of the CO2 flux, and we chose therefore to complete any missing data through statistical imputation. The CO2 maps produced by this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data and we expect to be able to produce even more accurate reconstructions in the coming years, in view of the predicted acquisitions of new data.


Ocean Science ◽  
2016 ◽  
Vol 12 (2) ◽  
pp. 379-389 ◽  
Author(s):  
Jaime Pitarch ◽  
Gianluca Volpe ◽  
Simone Colella ◽  
Hajo Krasemann ◽  
Rosalia Santoleri

Abstract. A 15-year (1997–2012) time series of chlorophyll a (Chl a) in the Baltic Sea, based on merged multi-sensor satellite data was analysed. Several available Chl a algorithms were sea-truthed against the largest in situ publicly available Chl a data set ever used for calibration and validation over the Baltic region. To account for the known biogeochemical heterogeneity of the Baltic, matchups were calculated for three separate areas: (1) the Skagerrak and Kattegat, (2) the central Baltic, including the Baltic Proper and the gulfs of Riga and Finland, and (3) the Gulf of Bothnia. Similarly, within the operational context of the Copernicus Marine Environment Monitoring Service (CMEMS) the three areas were also considered as a whole in the analysis. In general, statistics showed low linearity. However, a bootstrapping-like assessment did provide the means for removing the bias from the satellite observations, which were then used to compute basin average time series. Resulting climatologies confirmed that the three regions display completely different Chl a seasonal dynamics. The Gulf of Bothnia displays a single Chl a peak during spring, whereas in the Skagerrak and Kattegat the dynamics are less regular and composed of highs and lows during winter, progressing towards a small bloom in spring and a minimum in summer. In the central Baltic, Chl a follows a dynamics of a mild spring bloom followed by a much stronger bloom in summer. Surface temperature data are able to explain a variable fraction of the intensity of the summer bloom in the central Baltic.


2012 ◽  
Vol 197 ◽  
pp. 271-277
Author(s):  
Zhu Ping Gong

Small data set approach is used for the estimation of Largest Lyapunov Exponent (LLE). Primarily, the mean period drawback of Small data set was corrected. On this base, the LLEs of daily qualified rate time series of HZ, an electronic manufacturing enterprise, were estimated and all positive LLEs were taken which indicate that this time series is a chaotic time series and the corresponding produce process is a chaotic process. The variance of the LLEs revealed the struggle between the divergence nature of quality system and quality control effort. LLEs showed sharp increase in getting worse quality level coincide with the company shutdown. HZ’s daily qualified rate, a chaotic time series, shows us the predictable nature of quality system in a short-run.


Sign in / Sign up

Export Citation Format

Share Document