Atlantic Warm Pool: climate variability, thermal ocean-atmosphere interactions and remote response to ENSO and NAO.

Author(s):  
Yoania Povea Perez

<p>The Atlantic Warm Pool (AWP) is a big body of warm water with SST greater or equal to 28.5◦ C, that appears in the Gulf of Mexico, the Caribbean and the western tropical North Atlantic and it is a key element of the climate system. Previous studies have focused on climate variability within the AWP, but did not take into account the distinctive properties of AWP sub-regions. In other cases, obtained results had not been tested against selected databases. This work will try to deal systematically with these limitations. Ocean reanalysis databases have been used in order to detect AWP climate variability, mechanisms through which thermal component of ocean-atmosphere interactions operates and the effect of remote phenomena such as El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO).  Empirical Orthogonal Functions, spectral analysis, linear correlation and composites analysis techniques have been used. A large portion of AWP variability comes from Caribbean Sea and Gulf of Mexico while North tropical Atlantic contains a large internal variability. The thermal component of ocean-atmosphere interactions appears partitioned in Gulf of Mexico and Atlantic from Caribbean Sea. SST/latent heat feedback mechanism operates not globally in the AWP but stronger in the open Atlantic sub-region. ENSO+ enhances AWP development, while ENSO- is opposite to both development and decay of AWP. NAO effect is stronger in its negative phase by enhancing the AWP decay.</p>

2007 ◽  
Vol 20 (20) ◽  
pp. 5021-5040 ◽  
Author(s):  
Chunzai Wang ◽  
Sang-ki Lee ◽  
David B. Enfield

Abstract The Atlantic warm pool (AWP) is a large body of warm water that comprises the Gulf of Mexico, the Caribbean Sea, and the western tropical North Atlantic. Located to its northeastern side is the North Atlantic subtropical high (NASH), which produces the tropical easterly trade winds. The easterly trade winds carry moisture from the tropical North Atlantic into the Caribbean Sea, where the flow intensifies, forming the Caribbean low-level jet (CLLJ). The CLLJ then splits into two branches: one turning northward and connecting with the Great Plains low-level jet (GPLLJ), and the other continuing westward across Central America into the eastern North Pacific. The easterly CLLJ and its westward moisture transport are maximized in the summer and winter, whereas they are minimized in the fall and spring. This semiannual feature results from the semiannual variation of sea level pressure in the Caribbean region owing to the westward extension and eastward retreat of the NASH. The NCAR Community Atmospheric Model and observational data are used to investigate the impact of the climatological annual mean AWP on the summer climate of the Western Hemisphere. Two groups of the model ensemble runs with and without the AWP are performed and compared. The model results show that the effect of the AWP is to weaken the summertime NASH, especially at its southwestern edge. The AWP also strengthens the summertime continental low over the North American monsoon region. In response to these pressure changes, the CLLJ and its moisture transport are weakened, but its semiannual feature does not disappear. The weakening of the easterly CLLJ increases (decreases) moisture convergence to its upstream (downstream) and thus enhances (suppresses) rainfall in the Caribbean Sea (in the far eastern Pacific west of Central America). Model runs show that the AWP’s effect is to always weaken the southerly GPLLJ. However, the AWP strengthens the GPLLJ’s northward moisture transport in the summer because the AWP-induced increase of specific humidity overcomes the weakening of southerly wind, and vice versa in the fall. Finally, the AWP reduces the tropospheric vertical wind shear in the main development region that favors hurricane formation and development during August–October.


2021 ◽  
Author(s):  
Jinghua Chao ◽  
Guangzhou Fan ◽  
Ruiqiang Ding ◽  
Quanjia Zhong ◽  
Zhenchao Wang

Abstract The Atlantic warm pool(AWP) of water having a temperature above 28.5°C encompasses the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic, influencing the regional and global climate. Much of the AWP interannual variabillity has been thought to be an outcome of external remote forcing by climate variability outside the tropical Atlantic, such as the El Niño-Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). This study indicates that the North American dipole (NAD), exemplified by a north-south seesaw in sea level pressure anomalies over the western tropical North Atlantic and northeastern North America, may provide another integral remote forcing source to influence the AWP. Both observational and model data prove that a strong positive (negative) phase of the winter NAD tends to inhibit (favor) the development of AWP in its area and depth in subsequent months. As opposed to the NAO, the NAD plays a more pivotal role in influencing the AWP due to its effectiveness in forcing the TNA SST variability, which means that AWP variability may be more of a lagging response to NAD atmospheric forcing than a lagging response to NAO atmospheric forcing. Additional analysis indicates that the winter NAD-like atmospheric signal may be stored in the following AWP, thus markedly influencing the TNA precipitation and air temperature in summer. It is speculated that the AWP may act as a bridge linking winter NAD to the following summer precipitation and air temperature in the TNA region.


2018 ◽  
Vol 31 (21) ◽  
pp. 8861-8873 ◽  
Author(s):  
Blanca Ayarzagüena ◽  
Sarah Ineson ◽  
Nick J. Dunstone ◽  
Mark P. Baldwin ◽  
Adam A. Scaife

It is well established that El Niño–Southern Oscillation (ENSO) impacts the North Atlantic–European (NAE) climate, with the strongest influence in winter. In late winter, the ENSO signal travels via both tropospheric and stratospheric pathways to the NAE sector and often projects onto the North Atlantic Oscillation. However, this signal does not strengthen gradually during winter, and some studies have suggested that the ENSO signal is different between early and late winter and that the teleconnections involved in the early winter subperiod are not well understood. In this study, we investigate the ENSO teleconnection to NAE in early winter (November–December) and characterize the possible mechanisms involved in that teleconnection. To do so, observations, reanalysis data and the output of different types of model simulations have been used. We show that the intraseasonal winter shift of the NAE response to ENSO is detected for both El Niño and La Niña and is significant in both observations and initialized predictions, but it is not reproduced by free-running Coupled Model Intercomparison Project phase 5 (CMIP5) models. The teleconnection is established through the troposphere in early winter and is related to ENSO effects over the Gulf of Mexico and Caribbean Sea that appear in rainfall and reach the NAE region. CMIP5 model biases in equatorial Pacific ENSO sea surface temperature patterns and strength appear to explain the lack of signal in the Gulf of Mexico and Caribbean Sea and, hence, their inability to reproduce the intraseasonal shift of the ENSO signal over Europe.


2013 ◽  
Vol 26 (4) ◽  
pp. 1249-1267 ◽  
Author(s):  
Chunzai Wang ◽  
Liping Zhang ◽  
Sang-Ki Lee

Abstract The response of freshwater flux and sea surface salinity (SSS) to the Atlantic warm pool (AWP) variations from seasonal to multidecadal time scales is investigated by using various reanalysis products and observations. All of the datasets show a consistent response for all time scales: A large (small) AWP is associated with a local freshwater gain (loss) to the ocean, less (more) moisture transport across Central America, and a local low (high) SSS. The moisture budget analysis demonstrates that the freshwater change is dominated by the atmospheric mean circulation dynamics, while the effect of thermodynamics is of secondary importance. Further decomposition points out that the contribution of the mean circulation dynamics primarily arises from its divergent part, which mainly reflects the wind divergent change in the low level as a result of SST change. In association with a large (small) AWP, warmer (colder) than normal SST over the tropical North Atlantic can induce anomalous low-level convergence (divergence), which favors anomalous ascent (decent) and thus generates more (less) precipitation. On the other hand, a large (small) AWP weakens (strengthens) the trade wind and its associated westward moisture transport to the eastern North Pacific across Central America, which also favors more (less) moisture residing in the Atlantic and hence more (less) precipitation. The results imply that variability of freshwater flux and ocean salinity in the North Atlantic associated with the AWP may have the potential to affect the Atlantic meridional overturning circulation.


2012 ◽  
Vol 412 ◽  
pp. 103-109 ◽  
Author(s):  
Pablo del Monte-Luna ◽  
Vicente Guzmán-Hernández ◽  
Eduardo A. Cuevas ◽  
Francisco Arreguín-Sánchez ◽  
Daniel Lluch-Belda

2007 ◽  
Vol 20 (5) ◽  
pp. 856-870 ◽  
Author(s):  
Lixin Wu ◽  
Feng He ◽  
Zhengyu Liu ◽  
Chun Li

Abstract In this paper, the atmospheric teleconnections of the tropical Atlantic SST variability are investigated in a series of coupled ocean–atmosphere modeling experiments. It is found that the tropical Atlantic climate not only displays an apparent interhemispheric link, but also significantly influences the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). In spring, the tropical Atlantic SST exhibits an interhemispheric seesaw controlled by the wind–evaporation–SST (WES) feedback that subsequently decays through the mediation of the seasonal migration of the ITCZ. Over the North Atlantic, the tropical Atlantic SST can force a significant coupled NAO–dipole SST response in spring that changes to a coupled wave train–horseshoe SST response in the following summer and fall, and a recurrence of the NAO in the next winter. The seasonal changes of the atmospheric response as well as the recurrence of the next winter’s NAO are driven predominantly by the tropical Atlantic SST itself, while the resulting extratropical SST can enhance the atmospheric response, but it is not a necessary bridge of the winter-to-winter NAO persistency. Over the Pacific, the model demonstrates that the north tropical Atlantic (NTA) SST can also organize an interhemispheric SST seesaw in spring in the eastern equatorial Pacific that subsequently evolves into an ENSO-like pattern in the tropical Pacific through mediation of the ITCZ and equatorial coupled ocean–atmosphere feedback.


2010 ◽  
Vol 23 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Ernesto Muñoz ◽  
Chunzai Wang ◽  
David Enfield

Abstract The influence of teleconnections on the Intra-Americas Sea (IAS; Gulf of Mexico and Caribbean Sea) has been mostly analyzed from the perspective of El Niño–Southern Oscillation (ENSO) on the Caribbean Sea (the latter being an extension of the tropical North Atlantic). This emphasis has overlooked both 1) the influence of other teleconnections on the IAS and 2) which teleconnections affect the Gulf of Mexico climate variability. In this study the different fingerprints that major teleconnection patterns have on the IAS during boreal spring are analyzed. Indices of teleconnection patterns are regressed and correlated to observations of oceanic temperature and atmospheric data from reanalyses and observational datasets. It is found that the Pacific teleconnection patterns that influence the IAS SSTs do so by affecting the Gulf of Mexico in an opposite manner to the Caribbean Sea. These analyzed Pacific climate patterns are the Pacific–North American (PNA) teleconnection, the Pacific decadal oscillation (PDO), and ENSO. The North Atlantic Oscillation (NAO) is related to a lesser degree with the north–south SST anomaly dipole than are Pacific teleconnection patterns. It is also found that the IAS influence from the midlatitude Pacific mostly affects the Gulf of Mexico, whereas the influence from the tropical Pacific mostly affects the Caribbean Sea. Therefore, the combination of a warm ENSO event and a positive PNA event induces a strong IAS SST anomaly dipole between the Gulf of Mexico and the Caribbean Sea during spring. By calculating an index that represents the IAS SST anomaly dipole, it is found that the dipole forms mostly in response to changes in the air–sea heat fluxes. In the Gulf of Mexico the dominant mechanisms are the air–sea differences in humidity and temperature. The changes in shortwave radiation also contribute to the dipole of net air–sea heat flux. The changes in shortwave radiation arise, in part, by the cloudiness triggered by the air–sea differences in humidity, and also by the changes in the convection cell that connects the Amazon basin to the IAS. Weaker Amazon convection (e.g., in the event of a warm ENSO event) reduces the subsidence over the IAS, and henceforth the IAS cloudiness increases (and the shortwave radiation decreases). This study contributes to a greater understanding of how the IAS is influenced by different Pacific and Atlantic teleconnections.


2009 ◽  
Vol 39 (3) ◽  
pp. 640-657 ◽  
Author(s):  
Aida Alvera-Azcárate ◽  
Alexander Barth ◽  
Robert H. Weisberg

Abstract The surface circulation of the Caribbean Sea and Gulf of Mexico is studied using 13 years of satellite altimetry data. Variability in the Caribbean Sea is evident over several time scales. At the annual scale, sea surface height (SSH) varies mainly by a seasonal steric effect. Interannually, a longer cycle affects the SSH slope across the current and hence the intensity of the Caribbean Current. This cycle is found to be related to changes in the wind intensity, the wind stress curl, and El Niño–Southern Oscillation. At shorter time scales, eddies and meanders are observed in the Caribbean Current, and their propagation speed is explained by baroclinic instabilities under the combined effect of vertical shear and the β effect. Then the Loop Current (LC) is considered, focusing on the anticyclonic eddies shed by it and the intrusion of the LC into the Gulf of Mexico through time. Twelve of the 21 anticyclonic eddies observed to detach from the LC are shed from July to September, suggesting a seasonality in the timing of these events. Also, a relation is found between the intrusion of the LC into the Gulf of Mexico and the size of the eddies shed from it: larger intrusions trigger smaller eddies. A series of extreme LC intrusions into the Gulf of Mexico, when the LC is observed as far as 92°W, are described. The analyses herein suggest that the frequency of such events has increased in recent years, with only one event occurring in 1993 versus three from 2002 to 2006. Transport through the Straits of Florida appears to decrease during these extreme intrusions.


2000 ◽  
Vol 18 (2) ◽  
pp. 247-251 ◽  
Author(s):  
R. García ◽  
P. Ribera ◽  
L. Gimenoo ◽  
E. Hernández

Abstract. The North Atlantic Oscillation (NAO) and the Southern Oscillation (SO) are compared from the standpoint of a possible common temporal scale of oscillation. To do this a cross-spectrum of the temporal series of NAO and SO indices was determined, finding a significant common oscillation of 6-8 years. To assure this finding, both series were decomposed in their main oscillations using singular spectrum analysis (SSA). Resulting reconstructed series of 6-8 years oscillation were then cross-correlated without and with pre-whitened, the latter being significant. The main conclusion is a possible relationship between a common oscillation of 6-8 years' that represents about 20% of the SO variance and about 25% of the NAO variance.Key words: Meteorology and atmospheric dynamics (climatology; ocean-atmosphere interactions)


Ocean Science ◽  
2013 ◽  
Vol 9 (3) ◽  
pp. 535-543 ◽  
Author(s):  
J. Park ◽  
G. Dusek

Abstract. The El Niño Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO) are known to influence coastal water levels along the East Coast of the United States. By identifying empirical orthogonal functions (EOFs), which coherently contribute from the Multivariate ENSO Index (MEI) to the AMO index (AMOI), we characterize both the expression of ENSO in the unsmoothed AMOI, and coherent relationships between these indices and interannual sea level anomalies at six stations in the Gulf of Mexico and western North Atlantic. Within the ENSO band (2–7 yr periods) the total contribution of MEI to unsmoothed AMOI variability is 79%. Cross correlation suggests that the MEI leads expression of the ENSO signature in the AMOI by six months, consistent with the mechanism of an atmospheric bridge. Within the ENSO band, essentially all of the coupling between the unsmoothed AMOI and sea level anomalies is the result of ENSO expression in the AMOI. At longer periods we find decadal components of sea level anomalies linked to the AMOI at three southern stations (Key West, Pensacola, Charleston), but not at the northern stations (Baltimore, Boston, Portland), with values of coherence ranging from 20 to 50%. The coherence of MEI to coastal sea level anomalies has a different structure and is generally weaker than that of the ENSO expressed AMOI influence, suggesting distinct physical mechanisms are influencing sea level anomalies due to a direct ENSO teleconnection when compared to teleconnections based on ENSO expression in the AMOI. It is expected that applying this analysis to extremes of sea level anomalies will reveal additional influences.


Sign in / Sign up

Export Citation Format

Share Document