Assessing and ameliorating edge effects in magnetic data transformations

Author(s):  
Peter Lelièvre ◽  
Dominique Fournier ◽  
Sean Walker ◽  
Nicholas Williams ◽  
Colin Farquharson

<p>Reduction to pole and other transformations of total field magnetic intensity data are often challenging to perform at low magnetic latitudes, when remanence exists, and when large topographic relief exists. Several studies have suggested use of inversion-based equivalent source methods for performing such transformations under those complicating factors. However, there has been little assessment of the importance of erroneous edge effects that occur when fundamental assumptions underlying the transformation procedures are broken. In this work we propose a transformation procedure that utilizes magnetization vector inversion, inversion-based regional field separation, and equivalent source inversion on unstructured meshes. We investigated whether edge effects in transformations could be reduced by performing a regional separation procedure prior to equivalent source inversion. We applied our proposed procedure to the transformation of total field magnetic intensity to magnetic amplitude data, using a complicated synthetic example based on a real geological scenario from mineral exploration. While the procedure performed acceptably on this test example, the results could be improved. We pose many questions regarding the various choices and control parameters used throughout the procedure, but we leave the investigation of those questions to future work.</p>

Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. B121-B133 ◽  
Author(s):  
Shida Sun ◽  
Chao Chen ◽  
Yiming Liu

We have developed a case study on the use of constrained inversion of magnetic data for recovering ore bodies quantitatively in the Macheng iron deposit, China. The inversion is constrained by the structural orientation and the borehole lithology in the presence of high magnetic susceptibility and strong remanent magnetization. Either the self-demagnetization effect caused by high susceptibility or strong remanent magnetization would lead to an unknown total magnetization direction. Here, we chose inversion of amplitude data that indicate low sensitivity to the direction of magnetization of the sources when constructing the underground model of effective susceptibility. To reduce the errors that arise when treating the total-field anomaly as the projection of an anomalous field vector in the direction of the geomagnetic reference field, we develop an equivalent source technique to calculate the amplitude data from the total-field anomaly. This equivalent source technique is based on the acquisition of the total-field anomaly, which uses the total-field intensity minus the magnitude of the reference field. We first design a synthetic model from a simplified real case to test the new approach, involving the amplitude data calculation and the constrained amplitude inversion. Then, we apply this approach to the real data. The results indicate that the structural orientation and borehole susceptibility bounds are compatible with each other and are able to improve the quality of the recovered model to obtain the distribution of ore bodies quantitatively and effectively.


Geophysics ◽  
2010 ◽  
Vol 75 (1) ◽  
pp. L1-L11 ◽  
Author(s):  
Yaoguo Li ◽  
Sarah E. Shearer ◽  
Matthew M. Haney ◽  
Neal Dannemiller

Three-dimensional (3D) inversion of magnetic data to recover a distribution of magnetic susceptibility has been successfully used for mineral exploration during the last decade. However, the unknown direction of magnetization has limited the use of this technique when significant remanence is present. We have developed a comprehensive methodology for solving this problem by examining two classes of approaches and have formulated a suite of methods of practical utility. The first class focuses on estimating total magnetization direction and then incorporating the resultant direction into an inversion algorithm that assumes a known direction. The second class focuses on direct inversion of the amplitude of the magnetic anomaly vector. Amplitude data depend weakly upon magnetization direction and are amenable to direct inversion for the magnitude of magnetization vector in 3D subsurface. Two sets of high-resolution aeromagnetic data acquired for diamond exploration in the Canadian Arctic are used to illustrate the methods’ usefulness.


Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. J11-J19 ◽  
Author(s):  
Shu-Ling Li ◽  
Yaoguo Li

We study the inversion of magnetic data acquired over a rugged observation surface and where the buried source bodies have strong remanent magnetization that leads to unknown total magnetization directions. These factors pose significant challenges for processing and inversion of such data. To tackle the challenges from both a rugged observation surface and an unknown magnetization direction, we propose a strategy through the joint use of the equivalent source technique and 3D amplitude inversion to obtain 3D magnetization strength. We use equivalent source processing to calculate the amplitude data in the space domain because the use of the wavenumber-domain method is invalid due to large variations in the data elevation. We then carried out an amplitude inversion to generate a 3D subsurface distribution of the magnitude of the total magnetization vector. The results from a synthetic example and aeromagnetic data in Daye Mine in China showed that this approach is effective and images the magnetic units whose contact zones with the limestone country rock host the mineralization. The method is general and can be applied to a variety of cases with similar challenges.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. J57-J67 ◽  
Author(s):  
Marlon C. Hidalgo-Gato ◽  
Valéria C. F. Barbosa

We have developed a fast 3D regularized magnetic inversion algorithm for depth-to-basement estimation based on an efficient way to compute the total-field anomaly produced by an arbitrary interface separating nonmagnetic sediments from a magnetic basement. We approximate the basement layer by a grid of 3D vertical prisms juxtaposed in the horizontal directions, in which the prisms’ tops represent the depths to the magnetic basement. To compute the total-field anomaly produced by the basement relief, the 3D integral of the total-field anomaly of a prism is simplified by a 1D integral along the prism thickness, which in turn is multiplied by the horizontal area of the prism. The 1D integral is calculated numerically using the Gauss-Legendre quadrature produced by dipoles located along the vertical axis passing through the prism center. This new magnetic forward modeling overcomes one of the main drawbacks of the nonlinear inverse problem for estimating the basement depths from magnetic data: the intense computational cost to calculate the total-field anomaly of prisms. The new sensitivity matrix is simpler and computationally faster than the one using classic magnetic forward modeling based on the 3D integrals of a set of prisms that parameterize the earth’s subsurface. To speed up the inversion at each iteration, we used the Gauss-Newton approximation for the Hessian matrix keeping the main diagonal only and adding the first-order Tikhonov regularization function. The large sparseness of the Hessian matrix allows us to construct and solve a linear system iteratively that is faster and demands less memory than the classic nonlinear inversion with prism-based modeling using 3D integrals. We successfully inverted the total-field anomaly of a simulated smoothing basement relief with a constant magnetization vector. Tests on field data from a portion of the Pará-Maranhão Basin, Brazil, retrieved a first depth-to-basement estimate that was geologically plausible.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. J75-J84 ◽  
Author(s):  
Camriel Coleman ◽  
Yaoguo Li

Three-dimensional inversion plays an important role in the quantitative interpretation of magnetic data in exploration problems, and magnetic amplitude data can be an effective tool in cases in which remanently magnetized materials are present. Because amplitude data are typically calculated from total-field anomaly data, the error levels must be characterized for inversions. Lack of knowledge of the error in amplitude data hinders the ability to properly estimate the data misfit associated with an inverse model and, therefore, the selection of the appropriate regularization parameter for a final model. To overcome these challenges, we have investigated the propagation of errors from total-field anomaly to amplitude data. Using parametric bootstrapping, we find that the standard deviation of the noise in amplitude data is approximately equal to that of the noise in total-field anomaly data when the amplitude data are derived from the conversion of total-field data to three orthogonal components. We then illustrate how the equivalent source method can be used to estimate the error in total-field anomaly data when needed. The obtained noise estimate can be applied to amplitude inversion to recover an optimal inverse model by applying the discrepancy principle. We test this method on synthetic and field data and determine its effectiveness.


2021 ◽  
Vol 40 (2) ◽  
pp. 89-98
Author(s):  
Yaoguo Li ◽  
Jiajia Sun ◽  
Shu-Ling Li ◽  
Marcelo Leão-Santos

Magnetic data are sensitive to both the induced magnetization in rock units caused by the present earth's magnetic field and the remanent magnetization acquired by rock units in past geologic time. Susceptibility is a direct indicator of the magnetic mineral content, whereas remanent magnetization carries information about the formation process and subsequent structural movement of geologic units. The ability to recover and use total magnetization, defined as the vectorial sum of the induced and remanent magnetization, therefore enables us to take full advantage of magnetic data. The exploration geophysics community has achieved significant advances in inverting magnetic data affected by remanent magnetization. It is now feasible to invert any magnetic data set for total magnetization. We provide an overview of the state of the art in magnetization inversion and demonstrate the informational value of inverted magnetization through a set of case studies from mineral exploration problems. We focus on the methods that recover either the magnitude of the total magnetization or the total magnetization vector itself.


2021 ◽  
Author(s):  
Robert Jackisch ◽  
Björn Henning Heincke ◽  
Robert Zimmermann ◽  
Erik Vest Sørensen ◽  
Markku Pirttijärvi ◽  
...  

Abstract. Mineral exploration in the West Greenland flood basalt province is attractive because of its resemblance to the magmatic sulphide-rich deposit in the Russian Norilsk region, but it is challenged by rugged topography and partly poor exposure for relevant geologic formations. On northern Disko Island, previous exploration efforts have identified rare native iron occurrences and a high potential for Ni-Cu-Co-PGE-Au mineralization. However, Quaternary landslide activity has obliterated rock exposure at many places at lower elevations. To augment prospecting field work under these challenging conditions, we acquire high-resolution magnetic and optical remote sensing data using drones in the Qullissat area. From the data, we generate a detailed 3D model of a mineralized basalt unit, belonging to the Asuk Member (Mb) of the Palaeocene Vaigat formation. A wide range of legacy data and newly acquired geo- and petrophysical, as well as geochemical-mineralogical measurements form the basis of an integrated geological interpretation of the unoccupied aerial system (UAS) surveys. In this context, magnetic data aims to define the location and the shape of the buried magmatic body, and to estimate if its magnetic properties are indicative for mineralization. High-resolution UAS-based multispectral orthomosaics are used to identify surficial iron staining, which serve as a proxy for outcropping sulphide mineralization. In addition, high-resolution UAS-based digital surface models are created for geomorphological characterisation of the landscape to accurately reveal landslide features. UAS-based magnetic data suggests that the targeted magmatic unit is characterized by a pattern of distinct positive and negative magnetic anomalies. We apply a 3D magnetization vector inversion model (MVI) on the UAS-based magnetic data to estimate the magnetic properties and shape of the magmatic body. By means of using constraints in the inversion, (1) optical UAS-based data and legacy drill cores are used to assign significant magnetic properties to areas that are associated with the mineralized Asuk Mb, and (2) the Earth’s magnetic and the paleomagnetic field directions are used to evaluate the general magnetization direction in the magmatic units. Our results indicate that the geometry of the mineralized target can be estimated as a horizontal sheet of constant thickness, and that the magnetization of the unit has a strong remanent component formed during a period of Earth’s magnetic field reversal. The magnetization values obtained in the MVI are in a similar range as the measured ones from a drillcore intersecting the targeted unit. Both the magnetics and topography confirm that parts of the target unit were displaced by landslides. We identified several fully detached and presumably rotated blocks in the obtained model. The model highlights magnetic anomalies that correspond to zones of mineralization and is used to identify outcrops for sampling. Our study demonstrates the potential and efficiency of using multi-sensor high-resolution UAS data to constrain the geometry of partially exposed geological units and assist exploration targeting in difficult, poorly exposed terrain.


2021 ◽  
Author(s):  
Arto Karinen

<p>Traditionally, the inversion of magnetic data assumes the magnetization of the local geology to run parallel to the Earth’s internal magnetic field that is usually modelled using International Geomagnetic Reference Field (IGRF). Assuming the magnetization parallel to the main field, only the total (scalar) magnetic data are the sufficient input for the inversion of source susceptibility.</p><p>Local magnetization may alter from the main field direction in areas of remanent magnetization. Recently, magnetization vector inversion (MVI) using the total field has become an important tool trying to distinguish magnetic data affected by remanenence. Total field as a scalar field exclude all information of the direction of the internal magnetization and more information is required to reveal any remanent magnetization from the main field direction.  Compared to total field using the 3-component XYZ vector magnetic measurements provide more information of the source.  More measurements increase the unambiguous nature of data and may reveal the areas of possible remanence. </p><p>To measure XYZ vector magnetic field we use fluxgate 3-component magnetometer with rigid installation on a fixed-wing UAV. With the help of accurate inertial measurement units the measured magnetic field can be determined in the direction of fixed coordinate system. The components of the measured magnetic field rotated into the geographical coordinate represent the magnetic field at survey area.</p><p>UAV survey provided the data as the input for the inversions. We made the inversion separately for both susceptibility and magnetization vector. Susceptibility inversion means inversion of induced magnetization, i.e., a single component of magnetization parallel to the main field direction. Magnetization vector inversion, however, resolves all three components of magnetization, which may or may not include remanent magnetization in addition to induced one.</p><p>The benefits from utilizing XYZ components of the magnetic field with magnetization inversion seem promising in finding remanenence magnetization.</p><p> </p><p> </p>


Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 756-756 ◽  
Author(s):  
Jean Roy

Vallee et al. (1992) remark on the sensitivity of airborne ratio measuring VLF instruments to platform attitude stability. The authors also remind the users of VLF total field amplitude data, as produced by instruments such as the Herz TOTEM, of two problems associated with this type of data: spatial and temporal fluctuations of the VLF primary field. They recommend the use of a dense network of VLF monitoring stations and numerical modeling of field propagation to cope with these problems. These two recommendations are briefly discussed here and one alternative recommendation is made.


KURVATEK ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 25-33
Author(s):  
Fatimah Fatimah

Tulakan Subdistrict, Pacitan Regency, East Java Province. This area is part of the Southern Mountain Zone of East Java, which is the Sunda-Banda magmatic arc of Oligo-Miocene age, where there are alterations and indications of valuable ore minerals. Field magnetic data is taken in an area of 1 x 1 km, with the looping method on the grid trajectory within 200 x 100 m. Then, magnetic data correction and data processing were carried out with Oasis Montaj. From the magnetic anomaly map, the value of high magnetic intensity in the southern part is fresh (intrusive) andesit-dasitic rock as host rock which causes alteration, in the middle has a low magnetic intensity value which is in the direction of the relatively NE-SW river direction, whereas in the north with high intensity is fresh andesite lava. From the image data, it can be seen that the straightness pattern of the geological structure which is dominated by the extensional structure with the direction of NE-SW and E-W is the main trap of epithermal veins carrying ore mineralization mainly Cu, Pb in the study area.


Sign in / Sign up

Export Citation Format

Share Document