An alternative method to evaluate fracture network efficiency to fluid flow

Author(s):  
Giampaolo Proietti ◽  
Valentina Romano ◽  
Alessia Conti ◽  
Maria Chiara Tartarello ◽  
Sabina Bigi

<p>Fracture networks exist at a wide range of scale in the earth crust and strongly influence the hydraulic behaviour of rocks, providing either pathways or barriers for fluid flow. Many oil, gas, geothermal and water supply reservoirs form in fractured rocks. The main challenge is the development of numerical models that describe adequately the fracture networks and the constitutive equations governing the physical processes in fractured reservoir. The hydraulic properties of fracture networks, derived from Discrete Fracture Network (DFN), models are commonly used to populate continuum equivalent models at reservoir scale, to reduce the computational cost and the numerical complexity. However, the efficiency of fracture networks to fluid flow is strongly tied to their connectivity and spatial distribution, that continuum models are not able to capture explicitly.In this work we used field data and synthetic models to introduce a new parameter to evaluate the efficiency of fracture networks to fluid flow, reflecting a range of variability in fracture network characteristics (e.g. P32, number of fractures, stress field). This alternative method allows to model fractured systems at reservoir scale, in a variety of geological settings, using exclusively a DFN approach.</p>

2020 ◽  
Author(s):  
Philipp Eichheimer ◽  
Marcel Thielmann ◽  
Wakana Fujita ◽  
Gregor J. Golabek ◽  
Michihiko Nakamura ◽  
...  

Abstract. Fluid flow on different scales is of interest for several Earth science disciplines like petrophysics, hydrogeology and volcanology. To parameterize fluid flow in large-scale numerical simulations (e.g. groundwater and volcanic systems), flow properties on the microscale need to be considered. For this purpose experimental and numerical investigations of flow through porous media over a wide range of porosities are necessary. In the present study we sinter glass bead media with various porosities. The microstructure, namely effective porosity and effective specific surface, is investigated using image processing. We determine flow properties like hydraulic tortuosity and permeability using both experimental measurements and numerical simulations. By fitting microstructural and flow properties to porosity, we obtain a modified Kozeny-Carman equation for isotropic low-porosity media, that can be used to simulate permeability in large-scale numerical models. To verify the modified Kozeny-Carman equation we compare it to the computed and measured permeability values.


2021 ◽  
Author(s):  
Alberto Ceccato ◽  
Giulia Tartaglia ◽  
Giulio Viola ◽  
Marco Antonellini

<p>Fractured crystalline basement units are attracting increasing attention as potential unconventional reservoirs for natural (oil, heat and water) resources and as potential waste (nuclear, CO<sub>2</sub>) disposal sites. The focus of the current efforts is the characterisation of the structural permeability of fractured crystalline basement units, which is primarily related to the geology, geometry, and spatial characteristics of fracture networks. Fracture network properties may be scale–dependent or independent. Thus, a multi–scale characterisation of fracture networks is usually recommended to quantify the scale–variability of properties and, eventually, the related predictive scaling laws. Fracture lineament maps are schematic representations of fracture distributions obtained from either manual or automated interpretation of 2D digital models of the earth surface at different scales. From the quantitative analysis on fracture lineament maps, we can retrieve invaluable information on the scale–dependence of fracture network properties.</p><p>Here we present the results of the quantification of fracture network and fracture set properties (orientation, length, spacing, spatial organisation) from multi– (outcrop to regional) scale 2D lineament maps of two crystalline basement study areas of Western Norway (Bømlo island and Kråkenes). Lineament maps were obtained from the manual interpretation of orthophotos and 2D digital terrain models retrieved from UAV–drone and LiDAR surveys.</p><p>Analyses aimed at the quantification of: (i) scaling laws for fracture length cumulative distributions, defined through a statistically–robust fitting method (Maximum Likelihood Estimations coupled with Kolmogorov–Smirnov tests); (ii) variability of orientation sets as a function of scale; (iii) spatial organisation of fracture sets among scales; (iv) fractal characteristics of fracture networks (fractal exponent). Results suggest that: (i) a statistical analysis considering variable censoring and truncation effects allows to confidently define the best–fitting scaling laws; (ii) the analysis of orientation variability of fracture sets among different scales may provide important constraints about the geometrical complexity of fracture and fault zones; (iii) the statistical analysis of 2D spacing variability and fracture intensity can be adopted to quantify fracture spatial organisation at different scales.</p><p>A statistically robust analysis of the scaling laws, length distributions, spacing, and spatial organisation of lineaments on 2D maps provides reliable results also where only partial or incomplete dataset/lineament maps are available. Such properties are the fundamental input parameters for conceptual (geologic) and numerical (discrete fracture network, DFN) models of fractured crystalline basement reservoirs. Therefore, a statistically robust analysis of fracture lineament maps may help to improve the accuracy of conceptual and numerical models.</p>


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
D. Roubinet ◽  
S. Demirel ◽  
E. B. Voytek ◽  
X. Wang ◽  
J. Irving

Modeling fluid flow in three-dimensional fracture networks is required in a wide variety of applications related to fractured rocks. Numerical approaches developed for this purpose rely on either simplified representations of the physics of the considered problem using mesh-free methods at the fracture scale or complex meshing of the studied systems resulting in considerable computational costs. Here, we derive an alternative approach that does not rely on a full meshing of the fracture network yet maintains an accurate representation of the modeled physical processes. This is done by considering simplified fracture networks in which the fractures are represented as rectangles that are divided into rectangular subfractures such that the fracture intersections are defined on the borders of these subfractures. Two-dimensional analytical solutions for the Darcy-scale flow problem are utilized at the subfracture scale and coupled at the fracture-network scale through discretization nodes located on the subfracture borders. We investigate the impact of parameters related to the location and number of the discretization nodes on the results obtained, and we compare our results with those calculated using reference solutions, which are an analytical solution for simple configurations and a standard finite-element modeling approach for complex configurations. This work represents a first step towards the development of 3D hybrid analytical and numerical approaches where the impact of the surrounding matrix will be eventually considered.


2020 ◽  
Author(s):  
Kyung Won Chang ◽  
Gungor Beskardes ◽  
Chester Weiss

<p>Hydraulic stimulation is the process of initiating fractures in a target reservoir for subsurface energy resource management with applications in unconventional oil/gas and enhanced geothermal systems. The fracture characteristics (i.e., number, size and orientation with respect to the wellbore) determines the modified permeability field of the host rock and thus, numerical simulations of flow in fractured media are essential for estimating the anticipated change in reservoir productivity. However, numerical modeling of fluid flow in highly fractured media is challenging due to the explosive computational cost imposed by the explicit discretization of fractures at multiple length scales. A common strategy for mitigating this extreme cost is to crudely simplify the geometry of fracture network, thereby neglecting the important contributions made by all elements of the complex fracture system.</p><p>The proposed “Hierarchical Finite Element Method” (Hi-FEM; Weiss, Geophysics, 2017) reduces the comparatively insignificant dimensions of planar- and curvilinear-like features by translating them into integrated hydraulic conductivities, thus enabling cost-effective simulations with requisite solutions at material discontinuities without defining ad-hoc, heuristic, or empirically-estimated boundary conditions between fractures and the surrounding formation. By representing geometrical and geostatistical features of a given fracture network through the Hi-FEM computational framework, geometrically- and geomechanically-dependent fluid flow properly can now be modeled economically both within fractures as well as the surrounding medium, with a natural “physics-informed” coupling between the two.</p><p>SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.</p>


2020 ◽  
Author(s):  
Simon Oldfield ◽  
Mikael Lüthje ◽  
Michael Welch ◽  
Florian Smit

<p>Large scale modelling of fractured reservoirs is a persistent problem in representing fluid flow in the subsurface. Considering a geothermal energy prospect beneath the Drenthe Aa area, we demonstrate application of a recently developed approach to efficiently predict fracture network geometry across an area of several square kilometres.</p><p>Using a strain based method to mechanically model fracture nucleation and propagation, we generate a discretely modelled fracture network consisting of individual failure planes, opening parallel and perpendicular to the orientation of maximum and minimum strain. Fracture orientation, length and interactions vary following expected trends, forming a connected fracture network featuring population statistics and size distributions comparable to outcrop examples.</p><p>Modelled fracture networks appear visually similar to natural fracture networks with spatial variation in fracture clustering and the dominance of major and minor fracture trends.</p><p>Using a network topology approach, we demonstrate that the predicted fracture network shares greater geometric similarity with natural networks. Considering fluid flow through the model, we demonstrate that hydraulic conductivity and flow anisotropy are strongly dependent on the geometric connection of fracture sets.</p><p>Modelling fracture evolution mechanically allows improved representation of geometric aspects of fracture networks to which fluid flow is particularly sensitive. This method enables rapid generation of discretely modelled fractures over large areas and extraction of suitable summary statistics for reservoir simulation. Visual similarity of the output models improves our ability to compare between our model and natural analogues to consider model validation.</p>


2016 ◽  
Vol 25 (3) ◽  
pp. 813-827 ◽  
Author(s):  
Ghislain Trullenque ◽  
Rishi Parashar ◽  
Clément Delcourt ◽  
Lucille Collet ◽  
Pauline Villard ◽  
...  

Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Saeed Mahmoodpour ◽  
Mrityunjay Singh ◽  
Kristian Bär ◽  
Ingo Sass

Well placement in a given geological setting for a fractured geothermal reservoir is necessary for enhanced geothermal operations. High computational cost associated with the framework of fully coupled thermo-hydraulic-mechanical (THM) processes in a fractured reservoir simulation makes the well positioning a missing point in developing a field-scale investigation. To enhance the knowledge of well placement for different working fluids, we present the importance of this topic by examining different injection-production well (doublet) positions in a given fracture network using coupled THM numerical simulations. Results of this study are examined through the thermal breakthrough time, mass flux, and the energy extraction potential to assess the impact of well position in a two-dimensional reservoir framework. Almost ten times the difference between the final amount of heat extraction is observed for different well positions but with the same well spacing and geological characteristics. Furthermore, the stress field is a strong function of well position that is important concerning the possibility of high-stress development. The objective of this work is to exemplify the importance of fracture connectivity and density near the wellbores, and from the simulated cases, it is sufficient to understand this for both the working fluids. Based on the result, the production well position search in the future will be reduced to the high-density fracture area, and it will make the optimization process according to the THM mechanism computationally efficient and economical.


2021 ◽  
Author(s):  
Serena Formenti ◽  
Alexander Peace ◽  
John Waldron ◽  
Carolyn Eyles ◽  
Rebecca Lee

<p>The Niagara Escarpment is a geological feature comprised of highly fractured Ordovician and Silurian shales and carbonates stretching through southern Ontario and parts of the north-eastern United States. Differential erosion of the shale and carbonate strata has generated a steep cliff face bisecting the city of Hamilton, Ontario. Fractures occur throughout the cliff face and result in the formation of loose blocks of rock that are subject to erosion through rockfalls. This presents structural stability issues and an associated geohazard, which is of particular concern due to the proximity of the escarpment to city infrastructure. Previous work has alluded towards the role of geologic fractures in controlling erosion and stability of the Niagara Escarpment, but the causal mechanisms and extent to which these processes operate remains unclear. As such, the aim of this study is to quantify and analyse fracture networks using a combined field and numerical modelling-based approach to understand the distribution and nature of fractures throughout the escarpment, their connectivity, fluid flow properties, and relationship to structural stability. The location, orientation, and aperture of fractures were systematically quantified and documented around Hamilton. Data were plotted and analysed using the software Orient to identify clusters representative of fracture sets and to calculate average fracture set orientations and the respective confidence intervals. Three primary sets of geological fractures were identified including: 1) a near-vertical bedding confined set oriented north-south, 2) a near-vertical bedding confined set oriented east-west and 3) sedimentary bedding planes which have facilitated fracture migration and controlled resultant fracture geometry. Discrete fracture network modelling of these fracture sets in MOVE highlights their high degree of connectivity and indicates that the distribution and nature of these discontinuities are predominant controls on the locations and sizes of rock fragments generated on the cliff face resulting in rockfalls. Moreover, fracture-controlled porosity is a significant contributor to fluid flow throughout the escarpment. We conclude that geologic fractures present a first-order control on the stability of the Niagara Escarpment near Hamilton.</p>


2021 ◽  
Author(s):  
Ajay K. Sahu ◽  
Ankur Roy

Abstract A previous study by the authors on synthetic fractal-fracture networks showed that lacunarity, a parameter that quantifies scale-dependent clustering in patterns, can be used as a proxy for connectivity and also, is an indicator of fluid flow in such model networks. In this research, we apply the concepts thus developed to the study of fractured reservoir analogs and seek solutions to more practical problems faced by modelers in the oil and gas industry. A set of seven nested fracture networks from the Devonian Sandstone of Hornelen Basin, Norway that have the same fractal-dimension but are mapped at different scales and resolutions is considered. We compare these seven natural fracture maps in terms of their lacunarity and connectivity values to test whether the former is a reasonable indicator of the latter. Additionally, these maps are also flow simulated by implementing a fracture continuum model and using a streamline simulator, TRACE3D. The values of lacunarity, connectivity and fluid recovery thus obtained are pairwise correlated with one another to look for possible relationships. The results indicate that while fracture maps that have the same fractal dimension show almost similar connectivity values, there exist subtle differences such that both the connectivity and clustering values change systematically with the scale at which the fracture networks are mapped. It is further noted that there appears to be a very good correlation between clustering, connectivity, and fluid recovery values for these fracture networks that belong to the same fractal system. The overall results indicate that while the fractal dimension is an important parameter for characterizing a specific type of fracture network geometry, it is the lacunarity or scale-dependent clustering attribute that controls connectivity in fracture maps and hence the flow properties. This research may prove helpful in quickly evaluating connectivity of fracture networks based on the lacunarity parameter. This parameter can therefore, be used for calibrating Discrete Fracture Network (DFN) models with respect to connectivity of reservoir analogs and can possibly replace the fractal dimension which is more commonly used in software that model DFNs. Additionally, while lacunarity has been mostly used for understanding network geometry in terms of clustering, we, for the first time, show how this may be directly used for understanding the potential flow behavior of fracture networks.


2002 ◽  
Vol 5 (02) ◽  
pp. 154-162 ◽  
Author(s):  
S. Sarda ◽  
L. Jeannin ◽  
R. Basquet ◽  
B. Bourbiaux

Summary Advanced characterization methodology and software are now able to provide realistic pictures of fracture networks. However, these pictures must be validated against dynamic data like flowmeter, well-test, interference-test, or production data and calibrated in terms of hydraulic properties. This calibration and validation step is based on the simulation of those dynamic tests. What has to be overcome is the challenge of both accurately representing large and complex fracture networks and simulating matrix/ fracture exchanges with a minimum number of gridblocks. This paper presents an efficient, patented solution to tackle this problem. First, a method derived from the well-known dual-porosity concept is presented. The approach consists of developing an optimized, explicit representation of the fractured medium and specific treatments of matrix/fracture exchanges and matrix/matrix flows. In this approach, matrix blocks of different volumes and shapes are associated with each fracture cell depending on the local geometry of the surrounding fractures. The matrix-block geometry is determined with a rapid image-processing algorithm. The great advantage of this approach is that it can simulate local matrix/fracture exchanges on large fractured media in a much faster and more appropriate way. Indeed, the simulation can be carried out with a much smaller number of cells compared to a fully explicit discretization of both matrix and fracture media. The proposed approach presents other advantages owing to its great flexibility. Indeed, it accurately handles the cases in which flows are not controlled by fractures alone; either the fracture network may be not hydraulically connected from one well to another, or the matrix may have a high permeability in some places. Finally, well-test cases demonstrate the reliability of the method and its range of application. Introduction In recent years, numerous research programs have been focusing on the topic of fractured reservoirs. Major advances were made, and oil companies now benefit from efficient methodologies, tools, and software for fractured reservoir studies. Nowadays, a study of a fractured reservoir, from fracture detection to full-field simulation, includes the following main steps: geological fracture characterization, hydraulic characterization of fractures, upscaling of fracture properties, and fractured reservoir simulation. Research on fractured reservoir simulation has a long history. In the early 1960s, Barenblatt and Zheltov1 first introduced the dual-porosity concept, followed by Warren and Root,2 who proposed a simplified representation of fracture networks to be used in dual-porosity simulators. Based on this concept, reservoir simulators3 are now able to correctly reproduce the main driving mechanisms occurring in fractured reservoirs, such as water imbibition, gas/oil and water/oil gravity drainage, molecular diffusion, and convection in fractures. Even single-medium simulators can perform fractured reservoir simulation when adequate pseudocapillary pressure curves and pseudorelative permeability curves can be input. Indeed, except for particular cases such as thermal recovery processes, full-field simulation of fractured reservoirs is no longer a problem. Geological characterization of fractures progressed considerably in the 1990s. The challenge was to analyze and integrate all the available fracture data to provide a reliable description of the fracture network both at field scale and at local reservoir cell scale. Tools have been developed for merging seismic, borehole imaging, lithological, and outcrop data together with the help of geological and geomechanical rules.3 These tools benefited from the progress of seismic acquisition and borehole imaging. Indeed, accurate seismic data lead to reliable models of large-scale fracture networks, and borehole imaging gives the actual fracture description along the wells, which enables a reliable statistical determination of fracture attributes. Finally, these tools provide realistic pictures of fracture networks. They are applied successfully in numerous fractured-reservoir studies. The upscaling of fracture properties is the problem of translating the geological description of fracture networks into reservoir simulation parameters. Two approaches are possible. In the first one, the fractured reservoir is considered as a very heterogeneous matrix reservoir; therefore, one applies the classical techniques available for heterogeneous single-medium upscaling. The second approach is based on the dual-porosity concept and consists of upscaling the matrix and the fracture separately. Based on this second approach, methodologies and software were developed in the 1990s to calculate equivalent fracture parameters with respect to the dual-porosity concept (i.e., a fracture-permeability tensor with main flow directions and anisotropy and a shape factor that controls the matrix/fracture exchange kinetics3–5). For a given reservoir grid cell, the upscaling procedures consist of generating the corresponding 3D discrete fracture network and computing the equivalent parameters from this network. In particular, the permeability tensor is computed from the results of steady-state flow simulations in the discrete fracture network alone (without the matrix).


Sign in / Sign up

Export Citation Format

Share Document