Precipitation structure during the life cycle of cloud systems over Peru using satellite based observations

Author(s):  
Shailenda Kumar ◽  
Yamina Silva ◽  
Carlos Del Castillo ◽  
Jose Luis Flores Rojas ◽  
Aldo Moya S. Alveraz ◽  
...  

<p>In the present study, a unique approach is applied to investigate the life cycle properties of the precipitation combining the satellite-based information. Data from Global Precipitation Measurement Dual Precipitation Radar (GPM-DPR) and brightness temperature (BT) form the GOES satellite. First, we used the GPM-DPR data to identify the precipitating cloud systems (PCSs) and then 9 (± 4 hours) hours of GOES BT data to identify the life phases for a particular PCSs e.g., a developing stage, a mature stage, or a dissipating stage. The case study of PCS related to different phases of the PCSs shows that PCSs consist of different systematic properties including the area of convective-stratiform precipitation, the convective rain rate and the storm-top height. The developing stage PCSs have the highest convective precipitation fraction (~26%) with highest near surface rain rate (RR, 4.97 mm h-1), whereas the dissipating stage PCSs have the largest precipitation area (11489 km2) with least near surface convective RR (~4.11 mm h-1). The vertical structure of precipitation and raindrop size distribution (DSD parameters) show the different characteristics above and below the freezing level and related with the different microphysical processes during different stages and related with the convective to stratiform area fraction and water vapour. The developing stage PCSs have the largest but sparse, droplets in convective precipitation, whereas the mature stage has the largest droplets below in the freezing level for all the vertical rainy profiles. The developing stage PCSs have the highest concentration of least sized of hydrometeors. Also, north-eastern continent of SA has higher near surface RR with higher sized of hydrometeors and even higher in developing stage PCSs. Our analysis indicates that the different microphysical properties for the PCSs in different phases are related to cloud and ice water path upward motion and related to the orographic influence.</p>

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 562
Author(s):  
Yingjue Wang ◽  
Jiafeng Zheng ◽  
Zhigang Cheng ◽  
Bingyun Wang

Precipitation microphysics over the Tibetan Plateau (TP) remain insufficiently understood, due to the lack of observations and studies. This paper presents a comprehensive investigation of the raindrop size distribution (DSD) for rainfall that happened on the eastern slope of TP in summer. DSD differences between different rain types and under different rain rates are investigated. Confidential empirical relationships between the gamma shape and slope parameters, and between reflectivity and rain rate are proposed. DSD properties in this area are also compared with those in other areas. The results indicate that the stratiform and convective rains contribute to different rain duration and amount, with diverse rainfall macro- and microphysical properties. The rain spectra of two rain types can become broader with higher concentrations as the rain rate increases. DSDs in this area are different to those in other areas. The stratiform DSD is narrower than that in the non-plateau area. The two rain types of this area both have higher number concentrations for 0.437–1.625 mm raindrops than those of the mid-TP. The relationships of shape–slope parameters and reflectivity–rain rate in this area are also different from those in other areas. The rain spectra in this area can produce a larger slope parameter under the same shape parameter than in the mid-TP. The convective rain can produce a smaller rain rate under the same reflectivity. The accuracy proposed reflectivity–rain rate relationship in application to quantitative rainfall estimation is also discussed. The results show that the relationship has an excellent performance when the rain rate exceeds 1 mm h−1.


2015 ◽  
Vol 8 (9) ◽  
pp. 9241-9287
Author(s):  
N. Roberto ◽  
E. Adirosi ◽  
L. Baldini ◽  
D. Casella ◽  
S. Dietrich ◽  
...  

Abstract. A multi-sensor analysis of convective precipitation events that occurred in central Italy, in autumn 2012 during the HyMeX (Hydrological cycle in the Mediterranean eXperiment) Special Observation Period (SOP) 1.1 is presented. Various microphysical properties of liquid and solid hydrometeors were examined to assess their relationship with lightning activity. The instrumentation used consisted of a C-band dual-polarization weather radar, a 2-D video disdrometer, and a lightning network. A fuzzy logic based hydrometeor classification algorithm was tuned and optimized for the detection of graupel from C-band dual-polarization radar measurements. Graupel ice water content was then retrieved and related to lightning activity. A linear correlation was found between the total mass of graupel above the 0° isothermal and the number of strokes detected by the lightning network in agreement with model outputs, which confirms the importance of ice in the electrical charging of convective clouds, although differences were noticed among events. Parameters of the gamma raindrop size distribution measured by a 2-D video disdrometer, revealed the transition from convective to stratiform regime during the event and where related. However, lightning activity was not always recorded when the precipitation regime was classified as convective. More robust relationships were found relating lightning activity to graupel.


2011 ◽  
Vol 50 (6) ◽  
pp. 1236-1254 ◽  
Author(s):  
Munehisa K. Yamamoto ◽  
Kenji Nakamura

AbstractRepresentative patterns from multichannel microwave brightness temperature Tb in the midlatitude oceanic region, observed by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), are studied during precipitation events detected by the TRMM precipitation radar (PR) for three summer and winter seasons using empirical orthogonal function (EOF) analysis. The first three patterns are interpreted as rain liquid water, solid particles, and rain type based on the frequency distributions of vertical profiles of the radar reflectivity factor and the heights of the storm top, cloud top, and freezing level. The first EOF (EOF1) correlates with the near-surface rain rate. While the eigenvector for the 85.5-GHz channel is less significant for EOF1 variability in summer, those in all channels contribute equally to the variability in winter. This difference suggests that summer precipitation is caused by additional solid particles formed in developing precipitation systems. The second EOF (EOF2) represents the number of solid particles and also corresponds to the near-surface rain rate. This result suggests an increase of solid particles with the development of precipitation systems. EOF2 varies largely by echo-top height in summer and by echo-top height and freezing height in winter. The positive component score has double Tb peaks. Dividing the score into two patterns according to these peaks reveals highly developed precipitation systems, such as convective rainbands and frontal systems, and weak precipitation with shallow systems caused by cold outbreaks in the winter case. The negative component score also shows shallow and weak precipitation systems with warm rain. The third EOF (EOF3) is related to rain type. Vertical profiles show a significant bright band with a small height difference between the echo top and freezing level for negative EOF3, while positive EOF3 has no bright band with a high echo top relative to the freezing height. The results indicate that stratiform and convective precipitation systems can be characterized by EOF3.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2265 ◽  
Author(s):  
Ma ◽  
Zhao ◽  
Yang ◽  
Xiao ◽  
Zhang ◽  
...  

Raindrop size distribution (DSD) can reflect the fundamental microphysics of precipitation and provide an accurate estimation of its amount and characteristics; however, there are few observations and investigations of DSD in cold, mountainous regions. We used the second-generation particle size and velocity disdrometer Parsivel2 to establish a quality control scheme for raindrop spectral data obtained for the Qinghai–Tibet Plateau in 2015. This scheme included the elimination of particles in the lowest two size classes, particles >10 mm in diameter and rain rates <0.01 mm∙h−1. We analyzed the DSD characteristics for different types of precipitation and rain rates in both permafrost regions and regions with seasonally frozen ground. The precipitation in the permafrost regions during the summer were mainly solid with a large particle size and slow fall velocity, whereas the precipitation in the regions with seasonally frozen ground were mainly liquid. The DSD of snow had a broader drop spectrum, the largest particle size, the slowest fall velocity, and the largest number of particles, followed by hail. Rain and sleet shared similar DSD characteristics, with a smaller particle size, slower velocity, and smaller number of particles. The particle concentration for different classes of rain rate decreased with an increase in particle size and decreased gradually with an increase in rain rate. Precipitation with a rain rate >2 mm∙h−1 was the main contributor to the annual precipitation. The dewpoint thresholds for snow and rain in permafrost regions were 0 and 1.5 °C, respectively. The dewpoint range 0–1.5 °C was characterized by mixed precipitation with a large proportion of hail. This study provides valuable DSD information on the Qinghai–Tibet Plateau and can be used as an important reference for the quality control of raindrop spectral data in regions dominated by solid precipitation.


2014 ◽  
Vol 53 (6) ◽  
pp. 1618-1635 ◽  
Author(s):  
Elisa Adirosi ◽  
Eugenio Gorgucci ◽  
Luca Baldini ◽  
Ali Tokay

AbstractTo date, one of the most widely used parametric forms for modeling raindrop size distribution (DSD) is the three-parameter gamma. The aim of this paper is to analyze the error of assuming such parametric form to model the natural DSDs. To achieve this goal, a methodology is set up to compare the rain rate obtained from a disdrometer-measured drop size distribution with the rain rate of a gamma drop size distribution that produces the same triplets of dual-polarization radar measurements, namely reflectivity factor, differential reflectivity, and specific differential phase shift. In such a way, any differences between the values of the two rain rates will provide information about how well the gamma distribution fits the measured precipitation. The difference between rain rates is analyzed in terms of normalized standard error and normalized bias using different radar frequencies, drop shape–size relations, and disdrometer integration time. The study is performed using four datasets of DSDs collected by two-dimensional video disdrometers deployed in Huntsville (Alabama) and in three different prelaunch campaigns of the NASA–Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) ground validation program including the Hydrological Cycle in Mediterranean Experiment (HyMeX) special observation period (SOP) 1 field campaign in Rome. The results show that differences in rain rates of the disdrometer DSD and the gamma DSD determining the same dual-polarization radar measurements exist and exceed those related to the methodology itself and to the disdrometer sampling error, supporting the finding that there is an error associated with the gamma DSD assumption.


Author(s):  
Z. B. Zhou ◽  
J. J. Lv ◽  
S. J. Niu

Abstract. Leizhou peninsula is located in the south of Guangdong Province, near South China Sea, and has a tropical and subtropical monsoon climate. Based on observed drop size distribution (DSD) data from July 2007 to August 2007 with PARSIVEL disdrometers deployed at Zhanjiang and Suixi, the characterists of DSDs are studied. Non-linear least squares method is used to fit Gamma distribution. Convective and stratiform averaged DSDs are in good agreement with Gamma distribution, especially in stratiform case. Convective average DSDs have a wider spectrum and higher peak. Microphysical parameter differences between convective and stratiform are discussed, convective precipitation has a higher mass-weighted mean diameter (Dm) and generalized intercepts (Nw) in both areas. The constrained relations between Gamma distribution parameter (μ, Λ, N0) is derived. The retrieved polarimetric radar parameter (KDP, ZDR, Zh) have a good self-consistency, which can be used to improve the accuracy of KDP calculation. R-KDP-ZDR is superior to the R-KDP, R-ZDR-Zh in quantitative precipitation estimation (QPE), with a correlation coefficient higher than 0.98.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1260 ◽  
Author(s):  
Zuhang Wu ◽  
Yun Zhang ◽  
Lifeng Zhang ◽  
Xiaolong Hao ◽  
Hengchi Lei ◽  
...  

In this study, we evaluated the performance of rain-retrieval algorithms for the Version 6 Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM DPR) products, against disdrometer observations and improved their retrieval algorithms by using a revised shape parameter µ derived from long-term Particle Size Velocity (Parsivel) disdrometer observations in Jianghuai region from 2014 to 2018. To obtain the optimized shape parameter, raindrop size distribution (DSD) characteristics of summer and winter seasons over Jianghuai region are analyzed, in terms of six rain rate classes and two rain categories (convective and stratiform). The results suggest that the GPM DPR may have better performance for winter rain than summer rain over Jianghuai region with biases of 40% (80%) in winter (summer). The retrieval errors of rain category-based µ (3–5%) were proved to be the smallest in comparison with rain rate-based µ (11–13%) or a constant µ (20–22%) in rain-retrieval algorithms, with a possible application to rainfall estimations over Jianghuai region. Empirical Dm–Ze and Nw–Dm relationships were also derived preliminarily to improve the GPM rainfall estimates over Jianghuai region.


2015 ◽  
Vol 72 (9) ◽  
pp. 3404-3416 ◽  
Author(s):  
Leo Pio D’Adderio ◽  
Federico Porcù ◽  
Ali Tokay

Abstract Numerous laboratory and numerical studies have been dedicated to understanding collisional breakup as one of the most important processes in rain formation. The present study aims to identify when, in natural rain, collisional breakup is dominant and thus able to modify the shape of the raindrop size distribution (DSD), up to the equilibrium DSD. To this end, an automated objective algorithm has been developed and applied to a total of more than 6000 two-minute-averaged DSDs. Since breakup is mostly observed in heavy precipitation, the method was applied to the DSDs where rain rate was above 5 mm h−1. The selected breakup DSDs had good agreement with those predicted to be the equilibrium DSD by different theoretical models. The equilibrium DSD was found in a variable fraction of the total samples (0%–7%), confirming that the onset of equilibrium is a rare event in natural rain. The occurrence of a DSD in which breakup is dominant and modifies the DSD but the equilibrium DSD is not reached is higher (15%–47%). The gamma distribution, which has been widely used in the parameterization of observed size spectra, had a poor fitting in breakup-induced DSD, especially in the 1.0–2.6-mm-diameter interval. This can impact applications for which the parameterization of DSD is needed, such as in the retrieval of a DSD integral parameter (such as rain rate) from active remote sensor data.


Sign in / Sign up

Export Citation Format

Share Document