Application of two different health risk assessment approaches to detect soil potentially toxic element induced risk

Author(s):  
Gevorg Tepanosyan ◽  
Lilit Sahakyan ◽  
Armen Saghatelyan

<p>Soils of urbanized and mining areas succeeded the main geochemical features of parent materials, as well as accumulate potentially toxic elements (PTE) from different anthropogenic sources. The latter resulted in the change of soil chemical composition and high level of PTE which may have negative reflection on people’s health. In this study 207 soil samples were collected from the entire territory of the city of Alaverdi hosting Alaverdi copper smelter. After the determination of Fe, Ba, Mn, Co, V, Pb, Zn, Cu, Cr, As and Mo concentrations by XRF the established data set was subjected for the PTE induced health risk assessment. In this study two commonly used health risk assessment approaches - Summary pollution index (Zc) [1]–[3] and Hazard Index (HI, US EPA) [4] were used to assess human health risk posed by the content of studied PTE in soil of Alaverdi city. The result showed that the detected concentrations are mainly the result of superposition of PTE contents introduced into the environment from natural mineralization processes and Alaverdi copper smelter related activities. The health risk assessment showed that the Zc values belonging to the extremely hazardous level has point-like shape and are surrounded by the hazardous and moderately hazardous levels, respectively. Summary pollution index showed that approximately 53 % of the city territory including the residential part is under the risk suggesting the increase in the overall incidence of diseases among frequently ill individuals, functional disorders of the vascular system and children with chronic diseases [1]. The US EPA method were in line with the results of the Zc and indicated that the observed contents of elements are posing non-carcinogenic risk to adult mainly near the copper smelter. In the case of children single-element non-carcinogenic risk values greater than 1 were detected for As, Fe, Co, Cu, Mn, Pb and Mo in 122, 95, 86, 10, 10, 9 and 6 samples out of 207 soil samples and the mean HQ values decrease in the following order: As(2.41)>Fe(1.14)>Co(1.09)> Mn(0.61)>Pb(0.41)>Cu(0.32)>V(0.19)>Mo(0.11)>Cr(0.05)>Ba(0.03)>Zn(0.02). The multi-elemental non-carcinogenic risk observed in the entire territory of the city indicating an adverse health effect to children. The results of this study suggesting the need of immediate risk reduction measures with special attention to arsenic.</p><p><strong>References:</strong></p><p>[1]         E. K. Burenkov and E. P. Yanin, “Ecogeochemical investigations in IMGRE: past, present, future,” Appl. Geochemistry, vol. 2, pp. 5–24, 2001.</p><p>[2]         C. C. Johnson, A. Demetriades, J. Locutura, and R. T. Ottesen, Mapping the Chemical Environment of Urban Areas. 2011.</p><p>[3]         Y. E. Saet, B. A. Revich, and E. P. Yanin, Environmental geochemistry. Nedra, 1990.</p><p>[4]         RAIS, “Risk Exposure Models for Chemicals User’s Guide,” The Risk Assessment Information System, 2020. [Online]. Available: https://rais.ornl.gov/tools/rais_chemical_risk_guide.html. [Accessed: 01-Jan-2020].</p><p> </p>

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11853
Author(s):  
Xingyong Zhang ◽  
Qixin Wu ◽  
Shilin Gao ◽  
Zhuhong Wang ◽  
Shouyang He

Heavy metals are released into the water system through various natural processes and anthropogenic activities, thus indirectly or directly endangering human health. The distribution, source, water quality and health risk assessment of dissolved heavy metals (V, Mn, Fe, Co, Ni, Zn, As, Mo, Sb) in major rivers in Wuhan were analyzed by correlation analysis (CA), principal component analysis (PCA), heavy metal pollution index (HPI), hazard index (HI) and carcinogenic risk (CR). The results showed that the spatial variability of heavy metal contents was pronounced. PCA and CA results indicated that natural sources controlled Mn, Fe, Co, Ni and Mo, and industrial emissions were the dominant factor for V, Zn and Sb, while As was mainly from the mixed input of urban and agricultural activities. According to the heavy metal pollution index (HPI, ranging from 23.74 to 184.0) analysis, it should be noted that As and Sb contribute most of the HPI values. The health risk assessment using HI and CR showed that V and Sb might have a potential non-carcinogenic risk and As might have a potential carcinogenic risk to adults and children in the study area (CR value exceeded target risk 10−4). At the same time, it was worth noting that As might have a potential non-carcinogenic risk for children around QLR (HI value exceeded the threshold value 1). The secular variation of As and Sb should be monitor in high-risk areas. The results of this study can provide important data for improving water resources management efficiency and heavy metal pollution prevention in Wuhan.


Author(s):  
Xinyu Han ◽  
Shuai Li ◽  
Zezheng Li ◽  
Xiaochen Pang ◽  
Yuzhai Bao ◽  
...  

To explore the mass concentration levels and health risks of heavy metals in the air in dense traffic environments, PM2.5 samples were collected at three sites in the city of Kunming in April and October 2013, and January and May 2014. Ten heavy metals––V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb––were analyzed by ICP–MS, and the results showed PM2.5 concentrations significantly higher in spring and winter than in summer and autumn, especially for Zn and Pb. The concentration of heavy metals on working days is significantly higher, indicating that vehicle emissions are significant contributors. An enrichment factor analysis showed that Cr, Mn, Ni, Cu, Zn, As, Cd and Pb come mainly from anthropogenic sources, while V and Co may be both anthropogenic and natural. The correlation and principal component analysis (PCA) showed that Ni, Cu, Zn, Cd and Pb mainly come from vehicles emissions and metallurgical industries; Cr and Mn, from vehicles emissions and road dust; and As, mainly from coal combustion. The health risk assessment shows that the non-carcinogenic risk thresholds of the heavy metals in PM2.5 to children and adult men and women are all less than 1. The carcinogenic risk of Cr for men and women in traffic-intensive areas exceeds 10−4, reaching 1.64 × 10−4 and 1.4 × 10−4, respectively.


Work ◽  
2021 ◽  
pp. 1-10
Author(s):  
Lu Zhang ◽  
Lin Li

BACKGROUND: The quality and safety of drinking water directly affect the health of the local population. However, due to the limited conditions in poor rural areas, the safety of drinking water is more prominent. OBJECTIVE: It aimed to ensure the safety of drinking water quality and population health in poor rural areas. METHODS: A rural poor area was taken as an example, the drinking water plants were monitored during wet season and dry season, respectively, and the water quality indicators of rural drinking water in the city in 2019 were detected and analyzed. Finally, based on the non-carcinogenic risk and carcinogenic risk evaluation model proposed, the health risk assessment of chemical pollutants in drinking water was carried out. RESULTS: In 2019, the qualified rate of drinking water in rural areas of the city was generally low. The average annual carcinogenic risk of drinking water in poor rural areas of the city was 1.57×10–6 (a–1), and the average annual non-carcinogenic risk was 5.38×10–9 (a–1). CONCLUSION: The health risk assessment model proposed can well evaluate the health risks of drinking water. The research provides a scientific basis for the risk management of drinking water of relevant departments.


2022 ◽  
Vol 15 (2) ◽  
Author(s):  
Hossein Habibi ◽  
Soheil Sobhanardakani ◽  
Mehrdad Cheraghi ◽  
Bahareh Lorestani ◽  
Maryam Kiani Sadr

2019 ◽  
Vol 96 (5) ◽  
pp. 442-445 ◽  
Author(s):  
V. V. Suchkov ◽  
E. A. Semaeva

There was executed the complex assessment of air pollution in the city Novokuibyshevsk in 2014. There were outlined basic chemicals exceeding hygienic standards, as well as causing both carcinogenic and non-carcinogenic health risk. Average concentrations of pollutants were shown to fail to exceed the average daily maximum permissible concentration, and on the basis of this air pollution index in the city of Novokuibyshevsk was the low in 2014. However, air pollution in the city of Novokuibyshevsk decreased not due to the reduction of the concentration of priority pollutants, but as a result of the revision of the admissible values for formaldehyde concentrations. Individual carcinogenic risks to the health of children under 18 years according to hexavalent chromium, benzene and formaldehyde exceeded the border of maximum permissible risk, and were attributed to the third reference range of risk values in accordance with the R 2.1.10.1920-04. The carcinogenic risk to the health of adults and the population of the city of Novokuibyshevsk as a whole was in the third reference range boundaries only for hexavalent chromium. However, the overall carcinogenic risk for health of children aged up to 18 years amounted to 1.18∙10-3 and moved into a fourth reference range boundaries. The total index of danger with all substances, the content of which was monitored in the ambient air in the city of Novokuibyshevsk, accounted for 17.74 and also demanded measures to reduce air pollution in the near future.


Author(s):  
Jiawen Yu ◽  
Jinlong Zhou ◽  
Aihua Long ◽  
Xinlin He ◽  
Xiaoya Deng ◽  
...  

A longevity area in Xinjiang, China and an adjacent non-longevity area both have similar climatic and hydrogeological conditions, and the residents of the two control groups have similar ethnic composition, diets and lifestyles. This study investigated if differences in groundwater quality between the longevity area and the non-longevity area are associated with the health of residents in the two control groups. In order to quantitatively describe the groundwater quality of the two control groups and its influence on human health, the Fuzzy Comprehensive Evaluation Method (FCEM) was used to compare and assess the overall water environment of the two control groups. Furthermore, the human health risk of groundwater for the two control groups was assessed using the Health Risk Assessment Model recommended by the U.S. Environmental Protection Agency (USEPA). Results showed that the overall water environment categories for the longevity area and non-longevity area are moderate quality (grade III) and very poor quality (grade V), respectively. The main health risk in the longevity area water environment is the non-carcinogenic risk (HQLLV) caused by Cl−. The main health risks in the non-longevity area water environment are the non-carcinogenic risk (HQCA) caused by Cl− and the carcinogenic risk (RiskCA) caused by As. The total health risk (HRall) caused by over-standard inorganic pollutants in the water environment of the non-longevity area is 3.49 times higher than that of the longevity area. In addition, the study showed that the water environment pollution downstream of the Keriya River is conjunctively caused by agricultural activities and domestic sewage. The overall water environment of the longevity area is more conducive to the health-longevity of residents than the non-longevity area.


Sign in / Sign up

Export Citation Format

Share Document