Wind waves modeling in the polar law weather conditions

Author(s):  
Alexandra Kuznetsova ◽  
Evgeny Poplavsky ◽  
Nikita Rusakov ◽  
Yuliya Troitskaya

<p>Arctic storms pose a great danger to developing commercial and passenger shipping, coastal infrastructure, and also for oil production from offshore platforms. This is primarily due to high waves and extreme winds. Such episodes of adverse weather conditions due to their rapid development are poorly predicted by modern models. For this purpose, the representation of the event of polar law is studied in the wave model WAVEWATCH III.</p><p>Wind waves were simulated under conditions of polar depression on ice-free water. To simulate wind waves under conditions of polar depression, the Barents Sea was selected, where, according to the data of [1, 2], a large number of polar hurricanes are observed. Among the identified polar hurricanes, for example, in [3], a hurricane that took place on 05.02.2009, observed at coordinates 69 N 40 E is chosen. The preliminary results in the wave model are obtained without the ice influence consideration. The developed model was configured using the CFSR wind reanalysis data. The resulting distribution of significant wave heights is obtained. Then, to consider the attenuation by sea ice, the reanalysis data of the Arctic System Reanalysis Version 2 (ASRv2), which is based on Polar WRF with a resolution of 15 km for the Arctic region, is used. Modeling the destruction of ice by waves during an intense arctic storm will be implemented using WW3 models with an IS2 module.</p><p>The work is supported by RFBR grant 18-05-60299.</p><ol><li>Smirnova, J. E., Golubkin, P. A., Bobylev, L. P., Zabolotskikh, E. V., & Chapron, B. (2015). Polar low climatology over the Nordic and Barents seas based on satellite passive microwave data. Geophysical Research Letters, 42(13), 5603-5609.</li> <li>Smirnova, J., & Golubkin, P. (2017). Comparing polar lows in atmospheric reanalyses: Arctic System Reanalysis versus ERA-Interim. Monthly Weather Review, 145(6), 2375-2383.</li> <li>Noer, G., & Lien, T. (2010). Dates and Positions of Polar lows over the Nordic Seas between 2000 and 2010. Norwegian Meteorological Institute Rep.</li> </ol>

2020 ◽  
Vol 223 ◽  
pp. 03021
Author(s):  
Alexander Dergunov ◽  
Oleg Yakubailik

The work is devoted to the search for relationships between the pollution of the atmosphere of Krasnoyarsk by particulate matter and temperature inversion – an increase in temperature with height in the surface layer of the atmosphere. The research is based on reanalysis data of the NASA GFS meteorological model for air temperature at different altitudes of the atmosphere and the results of measurements of concentrations of particulate matter in the air monitoring system of the FRC KSC SB RAS, as well as information about officially declared periods of adverse weather conditions. The results obtained allow us to conclude that there is a high degree of correlation between these values, and that it is possible to use the GFS model data to predict the environmental situation.


Author(s):  
Meric Pakkan ◽  
David Heng ◽  
Ove Tobias Gudmestad

The oil resource potential in the Arctic/sub-Arctic regions is estimated to be as high as that 25% of the world’s yet-to-be-found. Nevertheless, operating in above-mentioned regions is more complicated and expensive than the ones in the North Sea. One of the most important aspects to consider in operating in these Arctic regions is the presence of polar lows and arctic fronts and storms. These extreme events and implications of them on the marine operations were the main focus of this study. While the maximum polar low-sourced wind speeds for 10-, 20- and 100-year return periods are estimated to be 55.37, 60.93 and 73.52 knots, the maximum polar low-sourced wave heights for 10-, 20- and 100-year return periods are calculated as 5.71, 6.66 and 8.82 meters, respectively. It is found out that polar lows weather conditions do not normally represent design values (survival conditions); however, they represent operational limitations. • We conclude that operations lasting longer than 72 hours shall be designed for a rougher weather than the polar lows lead to (survival mode). • For operations of duration less than 72 hours, the weather forecast is crucial and it must also be possible to abort the operation within a short period if one is close to a polar weather front as a polar low may appear very quickly.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 350
Author(s):  
Vladimir Platonov ◽  
Mikhail Varentsov

Diverse and severe weather conditions and rapid climate change rates in the Arctic emphasize the need for high-resolution climatic and environmental data that cannot be obtained from the scarce observational networks. This study presents a new detailed hydrometeorological dataset for the Russian Arctic region, obtained as a long-term hindcast with the nonhydrostatic atmospheric model COSMO-CLM for the 1980–2016 period. The modeling workflow, evaluation techniques, and preliminary analysis of the obtained dataset are discussed. The model domain included the Barents, Kara, and Laptev Seas with ≈12-km grid spacing. The optimal model setup was chosen based on preliminary simulations for several summer and winter periods with varied options, and included the usage of ERA-Interim reanalysis data as forcing data, the new model version 5.05 with so-called ICON-based physics, and a spectral nudging technique. The wind speed and temperature climatology in the new COSMO-CLM dataset closely agreed with the ERA-Interim reanalysis, but with detailed spatial patterns. The added value of the higher-resolution COSMO-CLM data with respect to the ERA-Interim was most pronounced for higher wind speeds during downslope windstorms with the influence of mountain ranges on the temperature patterns, including surface temperature inversions. The potential applications and plans of further product development are also discussed.


Author(s):  
Viktor G. Mashkov ◽  
Vladimir A. Malyshev

In the article the peculiarities landing a helicopter on a snowy (dusty) area and analysis the security when boarding an aircraft of the helicopter type on unprepared ground. Conditions insufficient visibility when landing in this way are one of the key problems. Since when landing on snow-covered or dry ground because the air jet from the rotor of the helicopter rises solid suspension, which critically reduces the horizontal and vertical visibility and can lead to an incorrect assessment by the crew the spatial position of the helicopter relative to the ground, in addition, unnoticed can remain obstacles in the landing zone (large stones, movable and stationary objects). In addition, when there is insufficient light or adverse weather conditions in the landing zone can be buildings, structures, masts power lines, trees, bushes, etc. Security analysis showed that the aircraft landing helicopters on unprepared ground is a serious problem. The solutions in the field synthetic vision technologies, for the safe landing of the helicopter, which allow to form a three-dimensional image the landing zone through a snow or dusty vortex, lidar (laser location), W-band radars and other developments, are outlined. The materials the article are practical value to specialists dealing with the issues of helicopter landing in remote forest, mountainous areas, the Arctic zone, etc.


2020 ◽  
Author(s):  
Nico Becker ◽  
Henning W. Rust ◽  
Uwe Ulbrich

Abstract. An impact of weather on road accidents has been identified in several studies with a focus mainly on monthly or daily accident counts. We study hourly probabilities of road accidents caused by adverse weather conditions in Germany on the spatial scale of administrative districts. Meteorological predictor variables from radar-based precipitation estimates, high-resolution reanalysis and weather forecasts are used in logistic regression models. Models taking into account temperature and hourly precipitation sums reach the best predictive skill according to different metrics. By introducing meteorological variables, the models hit rate is increased from 0.3 to 0.7, while keeping the false alarm rate constant at 0.2. Accident probability has a non-linear relationship with precipitation. Given an hourly precipitation sum of 1 mm, accident probabilities are about 5 times larger at negative temperatures compared to positive temperatures. Based on ensemble weather forecasts skilful predictions of accident probabilities of up to 21 hours are possible; the loss of skill compared to a model using radar and reanalysis data is negligible. The findings are relevant in the context of impact based warnings for both road users, road maintenance and traffic management authorities, as well as rescue forces.


2020 ◽  
Vol 20 (10) ◽  
pp. 2857-2871
Author(s):  
Nico Becker ◽  
Henning W. Rust ◽  
Uwe Ulbrich

Abstract. Impacts of weather on road accidents have been identified in several studies with a focus mainly on monthly or daily accident counts. This study investigates hourly probabilities of road accidents caused by adverse weather conditions in Germany on the spatial scale of administrative districts using logistic regression models. Including meteorological predictor variables from radar-based precipitation estimates, high-resolution reanalysis and weather forecasts improves the prediction of accident probability compared to models without weather information. For example, the percentage of correctly predicted accidents (hit rate) is increased from 30 % to 70 %, while keeping the percentage of wrongly predicted accidents (false-alarm rate) constant at 20 %. When using ensemble weather forecasts up to 21 h instead of radar and reanalysis data, the decline in model performance is negligible. Accident probability has a nonlinear relationship with precipitation. Given an hourly precipitation sum of 1 mm, accident probabilities are approximately 5 times larger at negative temperatures compared to positive temperatures. The findings are relevant in the context of impact-based warnings for road users, road maintenance, traffic management and rescue forces.


2015 ◽  
Vol 96 (8) ◽  
pp. 1229-1231 ◽  
Author(s):  
John M. Forsythe ◽  
John M. Haynes

Abstract Polar lows generate hazardous weather conditions in the Arctic, and satellites have played a key role in understanding their genesis and dynamics. For the first time, an overpass of the CloudSat 94-GHz cloud radar over a polar low has been recorded. The case occurred in November 2013 in the Labrador Sea between Canada and Greenland, and had a striking convective appearance with an eyelike feature. A deep cloud band was observed by the radar, with radar reflectivity up to 5-km in altitude in a 50-km-wide band. It is likely that more such matchups exist in the CloudSat mission data.


Author(s):  
Olga Mashtaler ◽  
Olga Mashtaler ◽  
Alexander Myasoedov ◽  
Alexander Myasoedov ◽  
Elizaveta Zabolotskikh ◽  
...  

The relevance of the polar lows (PLs) research is justified by their great destructive power and creation of threat to the safety of navigation in the high latitudes and along the Northern Sea Route. The most dangerous effects on maritime activities are strong winds, waves and icing. In addition, the study of the PLs acquires relevance due to the sharp decrease of the sea ice area in the Arctic in recent years and the emergence of areas of open water, suitable for the appearance and development of PLs. However, despite the importance of PLs, they are apparently not sufficiently studied. As there are no meteorological observations in the areas of their appearance, the main source of information about them are satellite observations. By using images on the SOLab SIOWS Arctic Portal from multiple satellites operating in the IR and visible ranges (e.g., MODIS and AVHRR), and using near-water wind fields from high resolution synthetic aperture radars (Sentine-1, ASAR) and low resolution scatterometers (ASCAT), we identify polar lows in various parts of the Arctic, revealing statistical regularities in the appearance of PLs, their distribution and intensity. Collected database of Pls and their characteristics will be used for further PLs forecasting model development.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Sign in / Sign up

Export Citation Format

Share Document