Snow Data Assimilation Methods for Hydrological, Land Surface, Meteorological and Climate Models: Results from COST HarmoSnow (2014-2018)

Author(s):  
Jürgen Helmert ◽  
Aynur Şensoy Şorman ◽  
Rodolfo Alvarado Montero ◽  
Carlo De Michele ◽  
Patricia De Rosnay ◽  
...  

<div><span>Snow as a major part of the cryosphere is an important component of Earth’s hydrological cycle and energy balance. Understanding the microstructural, macrophysical, thermal and optical properties of the snowpack is essential for integration into numerical models and there is a great need for accurate snow data at different spatial and temporal resolutions to address the challenges of changing snow conditions.</span></div><div><span>Physical snow properties are currently determined by traditional ground-based measurements as well as remote sensing, over a range of temporal and spatial scales, following considerable developments in instrument technology over recent years. </span></div><div><span>Data assimilation (DA)</span><span> methods are widely used</span> <span>to combine data from different observations</span><span> with numerical model using uncertainties </span><span>of observed and modeled variables  to produce an optimal estimate. DA provides a reliable improvement of the initial states of the numerical model and a benefit for hydrological and snow model forecasts. </span></div><div> </div><div><span>European efforts to harmonize approaches for validation, and methodologies of snow measurement practices, instrumentation, algorithms and data assimilation techniques were coordinated by the European Cooperation in Science and Technology (COST) Action ES1404 “HarmoSnow”, entitled, “A European network for a harmonized monitoring of snow for the benefit of climate change scenarios, hydrology and numerical weather prediction” (2014-2018) .</span></div><div><span>One of the key objectives of the action was “Advance the application of snow DA in numerical weather prediction (NWP) and hydrological models, and show its benefit for weather and hydrological forecasting as well as other applications.” </span></div><div><span>One key result from COST HarmoSnow is a better knowledge about the diversity of usage of snow observations in DA, forcing, monitoring, validation, or verification within NWP, hydrology, snow and climate models. The main parts of this knowledge are retrieved from a COST HarmoSnow survey exploring the common practices on the use of snow observations in different modeling environments. We will show results from the survey and their implications towards standardized and improved usage of snow observations in various data assimilation applications.</span></div>

Geosciences ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 489 ◽  
Author(s):  
Jürgen Helmert ◽  
Aynur Şensoy Şorman ◽  
Rodolfo Alvarado Montero ◽  
Carlo De Michele ◽  
Patricia de Rosnay ◽  
...  

The European Cooperation in Science and Technology (COST) Action ES1404 “HarmoSnow”, entitled, “A European network for a harmonized monitoring of snow for the benefit of climate change scenarios, hydrology and numerical weather prediction” (2014-2018) aims to coordinate efforts in Europe to harmonize approaches to validation, and methodologies of snow measurement practices, instrumentation, algorithms and data assimilation (DA) techniques. One of the key objectives of the action was “Advance the application of snow DA in numerical weather prediction (NWP) and hydrological models and show its benefit for weather and hydrological forecasting as well as other applications.” This paper reviews approaches used for assimilation of snow measurements such as remotely sensed and in situ observations into hydrological, land surface, meteorological and climate models based on a COST HarmoSnow survey exploring the common practices on the use of snow observation data in different modeling environments. The aim is to assess the current situation and understand the diversity of usage of snow observations in DA, forcing, monitoring, validation, or verification within NWP, hydrology, snow and climate models. Based on the responses from the community to the questionnaire and on literature review the status and requirements for the future evolution of conventional snow observations from national networks and satellite products, for data assimilation and model validation are derived and suggestions are formulated towards standardized and improved usage of snow observation data in snow DA. Results of the conducted survey showed that there is a fit between the snow macro-physical variables required for snow DA and those provided by the measurement networks, instruments, and techniques. Data availability and resources to integrate the data in the model environment are identified as the current barriers and limitations for the use of new or upcoming snow data sources. Broadening resources to integrate enhanced snow data would promote the future plans to make use of them in all model environments.


2020 ◽  
Author(s):  
Jonas Rothermel ◽  
Maike Schumacher

<p><span>Physical-based Land Surface Models (LSMs) have deepened the understanding of the hydrological cycle and serve as the lower boundary layer in atmospheric models for numerical weather prediction. As any numerical model, they are subject to various sources of uncertainty, including simplified model physics, unknown empirical parameter values and forcing errors, particularly precipitation. Quantifying these uncertainties is important for assessing the predictive power of the model, especially in applications for environmental hazard warning. Data assimilation systems also benefit from realistic model error estimates.</span></p><p><span><span>In this study, the LSM NOAH-MP is evaluated over the Mississippi basin by running a large ensemble of model configurations with suitably perturbed forcing data and parameter values. For this, sensible parameter distributions are obtained by performing a thorough sensitivity analysis, identifying the most informative parameters beforehand by a screening approach. The ensemble of model outputs is compared against various hydrologic and atmospheric feedback observations, including SCAN soil moisture data, GRACE TWS anomaly data and AmeriFlux evapotranspiration measurements. The long-term aim of this study is to improve land-surface states via data assimilation and to investigate their influence on short- to midterm numerical weather prediction. Thus, the uncertainty of the simulated model states, such as snow, soil moisture in various layers, and groundwater are thoroughly studied to estimate the relative impact of possible hydrologic data sets in the assimilation.</span></span></p>


2019 ◽  
Vol 51 (3) ◽  
pp. 273 ◽  
Author(s):  
Miranti Indri Hastuti ◽  
Jaka Anugrah Ivanda Paski ◽  
Fatkhuroyan Fatkhuroyan

Data assimilation is one of method to improve initial atmospheric conditions data in numerical weather prediction. The assimilation of weather radar data that has quite extensive and tight data is considered to be able to improve the quality of weather prediction and analysis. This study aims to investigate the effect of assimilation of Doppler weather radar data in Weather Research Forecasting (WRF) numerical model for the prediction of heavy rain events in the Jabodetabek area with dates representing four seasons respectively on 20 February 2017, 3 April 2017, 13 June 2017, and 9 November 2017. For this purpose, the reflectivity (Z) and radial velocity (V) data from Plan Position Indicator (PPI) product and reflectivity (Z) data from Constant Altitude PPI (CAPPI) product were assimilated using WRFDA (WRF Data Assimilation) numerical model with 3DVar (The Three Dimensional Variational) system. The output of radar data assimilation and without assimilation of the numerical model of WRF is verified by spatial with GSMaP data and by point with precipitation observation data. In general, WRF radar assimilation provides a better simulation of spatial and point rain events compared to the WRF model without assimilation which is improvements of rain prediction from WRF radar data assimilation would be more visible in areas close to radar sources and not echo-blocked from fixed objects, and more visible during the rainy season


2019 ◽  
Vol 20 (8) ◽  
pp. 1533-1552 ◽  
Author(s):  
Ervin Zsoter ◽  
Hannah Cloke ◽  
Elisabeth Stephens ◽  
Patricia de Rosnay ◽  
Joaquin Muñoz-Sabater ◽  
...  

Abstract Land surface models (LSMs) have traditionally been designed to focus on providing lower-boundary conditions to the atmosphere with less focus on hydrological processes. State-of-the-art application of LSMs includes a land data assimilation system (LDAS), which incorporates available land surface observations to provide an improved realism of surface conditions. While improved representations of the surface variables (such as soil moisture and snow depth) make LDAS an essential component of any numerical weather prediction (NWP) system, the related increments remove or add water, potentially having a negative impact on the simulated hydrological cycle by opening the water budget. This paper focuses on evaluating how well global NWP configurations are able to support hydrological applications, in addition to the traditional weather forecasting. River discharge simulations from two climatological reanalyses are compared: one “online” set, which includes land–atmosphere coupling and LDAS with an open water budget, and an “offline” set with a closed water budget and no LDAS. It was found that while the online version of the model largely improves temperature and snow depth conditions, it causes poorer representation of peak river flow, particularly in snowmelt-dominated areas in the high latitudes. Without addressing such issues there will never be confidence in using LSMs for hydrological forecasting applications across the globe. This type of analysis should be used to diagnose where improvements need to be made; considering the whole Earth system in the data assimilation and coupling developments is critical for moving toward the goal of holistic Earth system approaches.


2018 ◽  
Vol 146 (2) ◽  
pp. 599-622 ◽  
Author(s):  
David D. Flagg ◽  
James D. Doyle ◽  
Teddy R. Holt ◽  
Daniel P. Tyndall ◽  
Clark M. Amerault ◽  
...  

Abstract The Trident Warrior observational field campaign conducted off the U.S. mid-Atlantic coast in July 2013 included the deployment of an unmanned aerial system (UAS) with several payloads on board for atmospheric and oceanic observation. These UAS observations, spanning seven flights over 5 days in the lowest 1550 m above mean sea level, were assimilated into a three-dimensional variational data assimilation (DA) system [the Naval Research Laboratory Atmospheric Variational Data Assimilation System (NAVDAS)] used to generate analyses for a numerical weather prediction model [the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS)] with a coupled ocean model [the Naval Research Laboratory Navy Coastal Ocean Model (NCOM)]. The impact of the assimilated UAS observations on short-term atmospheric prediction performance is evaluated and quantified. Observations collected from 50 radiosonde launches during the campaign adjacent to the UAS flight paths serve as model forecast verification. Experiments reveal a substantial reduction of model bias in forecast temperature and moisture profiles consistently throughout the campaign period due to the assimilation of UAS observations. The model error reduction is most substantial in the vicinity of the inversion at the top of the model-estimated boundary layer. Investigations reveal a consistent improvement to prediction of the vertical position, strength, and depth of the boundary layer inversion. The relative impact of UAS observations is explored further with experiments of systematic denial of data streams from the NAVDAS DA system and removal of individual measurement sources on the UAS platform.


WRF model have been tuned and tested over Georgia’s territory for years. First time in Georgia theprocess of data assimilation in Numerical weather prediction is developing. This work presents how forecasterror statistics appear in the data assimilation problem through the background error covariance matrix – B, wherethe variances and correlations associated with model forecasts are estimated. Results of modeling of backgrounderror covariance matrix for control variables using WRF model over Georgia with desired domain configurationare discussed and presented. The modeling was implemented in two different 3DVAR systems (WRFDA andGSI) and results were checked by pseudo observation benchmark cases using also default global and regional BEmatrixes. The mathematical and physical properties of the covariances are also reviewed.


2019 ◽  
Vol 147 (4) ◽  
pp. 1107-1126 ◽  
Author(s):  
Jonathan Poterjoy ◽  
Louis Wicker ◽  
Mark Buehner

Abstract A series of papers published recently by the first author introduce a nonlinear filter that operates effectively as a data assimilation method for large-scale geophysical applications. The method uses sequential Monte Carlo techniques adopted by particle filters, which make no parametric assumptions for the underlying prior and posterior error distributions. The filter also treats the underlying dynamical system as a set of loosely coupled systems to effectively localize the effect observations have on posterior state estimates. This property greatly reduces the number of particles—or ensemble members—required for its implementation. For these reasons, the method is called the local particle filter. The current manuscript summarizes algorithmic advances made to the local particle filter following recent tests performed over a hierarchy of dynamical systems. The revised filter uses modified vector weight calculations and probability mapping techniques from earlier studies, and new strategies for improving filter stability in situations where state variables are observed infrequently with very accurate measurements. Numerical experiments performed on low-dimensional data assimilation problems provide evidence that supports the theoretical benefits of the new improvements. As a proof of concept, the revised particle filter is also tested on a high-dimensional application from a real-time weather forecasting system at the NOAA/National Severe Storms Laboratory (NSSL). The proposed changes have large implications for researchers applying the local particle filter for real applications, such as data assimilation in numerical weather prediction models.


2021 ◽  
Author(s):  
Ruth Mottram ◽  
Oskar Landgren ◽  
Rasmus Anker Pedersen ◽  
Kristian Pagh Nielsen ◽  
Ole Bøssing Christensen ◽  
...  

<p>The development of the HARMONIE model system has led to huge advances in numerical weather prediction, including over Greenland where a numerical weather prediction (NWP) model is used to forecast daily surface mass budget over the Greenland ice sheet as presented on polarportal.dk. The new high resolution Copernicus Arctic Reanalysis further developed the possibilities in HARMONIE with full 3DVar data assimilation and extended use of quality-controlled local observations. Here, we discuss the development and current status of the climate version of the HARMONIE Climate model (HCLIM). The HCLIM system has opened up the possibility for flexible use of the model at a range of spatial scales using different physical schemes including HARMONIE-AROME, ALADIN and ALARO for different spatial and temporal resolutions and assimilating observations, including satellite data on sea ice concentration from ESA CCI+, to improve hindcasts. However, the range of possibilities means that documenting the effects of different physics and parameterisation schemes is important before widespread application. </p><p>Here, we focus on HCLIM performance over the Greenland ice sheet, using observations to verify the different plausible set-ups and investigate biases in climate model outputs that affect the surface mass budget (SMB) of the Greenland ice sheet. </p><p>The recently funded Horizon 2020 project PolarRES will use the HCLIM model for very high resolution regional downscaling, together with other regional climate models in both Arctic and Antarctic regions, and our analysis thus helps to optimise the use of HCLIM in the polar regions for different modelling purposes.</p>


Sign in / Sign up

Export Citation Format

Share Document